K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

Mình giúp cho đáp án đúng 100%

5^2003+5^2002+5^2001 chia hết cho 31

=5^2001.(1+5+5^2)

=5^2001.31 chia hết cho 3

hai bài kia tương tự rất dễ đúng ko

17 tháng 9 2016

Ta có: 52003 + 52002 + 52001

= 52001.(1 + 5 + 25)

= 52001 . 31 chia hết cho 31

Ta có: 1 + 7 + 72 + ...... + 7101

= (1 + 7) + (72 + 73) + ..... + (7100 + 7101)

= 1.8 + 72.(1 + 7) + ..... + 7100.(1 + 7)

= 1.8 + 72.8 + ..... + 7100 . 8

= 8.(1 + 72 + ..... + 7100) chia hết cho 8

25 tháng 9 2016

Ta có: 52003 + 52002 + 52001 

= 52001.(52 + 5 + 1)

= 52001 . 31 chia hết cho 31 

16 tháng 8 2015

a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31 

b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8

c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28

16 tháng 8 2015

a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31 

b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8

c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28

14 tháng 8 2015

\(\left(a\right)5^{2003}+5^{2002}+5^{2001}=5^{2001}\left(5^2+5+1\right)=5^{2001}\left(25+5+1\right)=5^{2001}.31\)

Luôn luôn chia hết cho 31 

 

14 tháng 8 2015

a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31 

b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8

c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28

cái này mới đúng

13 tháng 10 2018

a) \(1+2+...+2^{2011}\)

\(=2^0+2+...+2^{2010}+2^{2011}\)

\(=2^0\left(1+2\right)+...+2^{2010}\left(1+2\right)\)

\(=2^0\cdot3+...+2^{2010}\cdot3\)

\(=3\left(2^0+...+2^{2010}\right)⋮3\left(đpcm\right)\)

Các câu còn lại tương tự, dài quá

13 tháng 10 2018

a) Dãy trên có : 2012 lũy thừa và 2012 \(⋮\)2 =< có thể ghpes thành các nhóm, mỗi nhóm 2 lũy thừa.

 Ta có : 

  A  = ( 1 + 2 ) + ( 22 + 23 ) + ...+( 22010 +  22011 )

=> A = 3 + 22 . ( 1 + 2 ) +...+ 22010. ( 1 + 2 )

=> A = 3 . ( 1 + 22 +...+ 22010 ) => A chia hết cho 3

-  Để chứng minh chia hết cho 5 thì ghép 4 cái liền. ( làm tương tự trên )

b, 

Ta có : 

 B = 1 + 7 +...+ 7101

=> B = ( 1 + 72 ) + ( 7 + 73 ) +...+ ( 799 + 7101 )

=> B = 50 + 72.( 1 + 72 ) +...+ 799. ( 1 + 72 )

=> B = 50 + 72.50 +...+799.50

=> B = 50.( 1 + 7+...+ 799 ) => B chia hết cho 50

Dưới tương tự...

28 tháng 12 2015

vì 20 chia hết cho 12 , 36 chia hết cho 12 nên 120a+36b chia hết cho 12

28 tháng 12 2016

a) 52003 + 52002 + 52001 chia hết cho 31

= 52001 . 52 + 52001 + 51 + 52001

= 52001 . ( 52 + 5 + 1 )

= 52001 . 31 chia hết cho 31

Bạn coi lại đề đi nhé , vì 439 + 440 + 441 không chia hết cho 28 nên mình không chứng minh được !

Nhưng nếu bạn nào thấy mình làm đúng phần a thì k cho mình nha !

4 tháng 9 2017

439+440+441=438(1+4+16)=438.21 chia hết cho 7

439+440+441 chia hết cho 4

Do đó biểu thức trên chia hết cho 28

4 tháng 10 2016

a)\(5^{2003}+5^{2002}+5^{2001}=5^{2001}\left(5^2+5+1\right)=5^{2001}.31\) chia hết cho 31 (đpcm)

b)\(4^{39}+4^{40}+4^{41}=4^{38}\left(4+4^2+4^3\right)=4^{38}.84=4^{28}.3.28\) chia hết cho 28 (đpcm)

22 tháng 8 2018

\(a.\)\(5^{2003}+5^{2002}+5^{2001}\)

\(=5^{2001}.\left(1+5+5^2\right)\)

\(=5^{2001}.31\)

\(\Rightarrow5^{2003}+5^{2002}+5^{2001}⋮31\)

\(b.\)

\(1+7+7^2+7^3+......+7^{101}\)

\(=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+....+7^{100}.\left(1+7\right)\)

\(=8+7^2.8+7^4.8+.....+7^{100}.8\)

\(=8+8.\left(7^2+7^4+...+7^{100}\right)\)

Ta thấy cả hai số hạng đều chia hết cho 8

\(\Rightarrow1+7+7^2+7^3+......+7^{101}⋮8\)

22 tháng 8 2018

Mình cảm ơn :)