Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)
\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)
ta có :
A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5
a) Ta có: 10^21 + 5=100...00(21 c/s 0) + 5=100....05(20 c/s 0)
-Để 100....05(20 c/s 0) chia hết cho 3 thì: 1+0+0+...+0+5 (20 c/s 0)=6 - chia hết cho 3. (1)
-mà 100....05(20 c/s 0) có c/s tận cùng là 5 => 100....05(20 c/s 0) chia hết cho 5 => 10^21 + 5 chia hết cho 5 (2)
Từ (1) và (2) => 10^21 + 5 chia hết cho 3 và 5
b)Ta có: 10^n + 8=100...00(n c/s 0) + 8=100....08(n-1 c/s 0)
-Để 100....08(n-1 c/s 0) chia hết cho 9 thì: 1+0+0+...+0+8 (n-1 c/s 0)=9 - chia hết cho 9. (1)
-mà 100....08(n-1 c/s 0) có c/s tận cùng là 8 => 100....08(n-1 c/s 0) chia hết cho 2 => 10^n + 8 chia hết cho 2 (2)
Từ (1) và (2) =>10^n + 8 chia hết cho 2 và 9 (n thuộc N*)
Gọi 2 số chia 7 có dư là \(7k+a;7q+a\left(p,q,a\in N;a\le7\right)\)
Ta có \(7k+a-\left(7q+a\right)=7k-7q=7\left(k-q\right)⋮7\)
Vậy ...
Gọi \(2\) số đề bài cho là \(7m+k\) và \(7.n+k\)
Hiệu của chúng là: \(\left(7.m+k\right)-\left(7.n+k\right)\)
\(=7.m+k-7.n-k\)
\(=7.m-7.n\)
\(7.\left(m-n\right)⋮7\)
Chứng tỏ nếu 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7
\(a,\left(n+10\right)\left(n+15\right)\)
Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)
Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)
Suy ra đpcm
\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)
Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)
Suy ra đpcm
\(a.\)\(5^{2003}+5^{2002}+5^{2001}\)
\(=5^{2001}.\left(1+5+5^2\right)\)
\(=5^{2001}.31\)
\(\Rightarrow5^{2003}+5^{2002}+5^{2001}⋮31\)
\(b.\)
\(1+7+7^2+7^3+......+7^{101}\)
\(=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+....+7^{100}.\left(1+7\right)\)
\(=8+7^2.8+7^4.8+.....+7^{100}.8\)
\(=8+8.\left(7^2+7^4+...+7^{100}\right)\)
Ta thấy cả hai số hạng đều chia hết cho 8
\(\Rightarrow1+7+7^2+7^3+......+7^{101}⋮8\)
Mình cảm ơn :)