K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

Ta có 1 + ab2 \(\ge\)\(2b\sqrt{a}\)

1 + bc2 \(\ge2c\sqrt{b}\)

1 + ca2 \(\ge2a\sqrt{c}\)

VT \(\ge\)\(2\left(\frac{b\sqrt{a}}{c^3}+\frac{c\sqrt{b}}{a^3}+\frac{a\sqrt{c}}{b^3}\right)\)

\(\ge2\frac{\left(\sqrt[4]{b^2a}+\sqrt[4]{c^2b}+\sqrt[4]{a^2c}\right)^2}{a^3+b^3+c^3}\)

\(\ge2\frac{\left(3\sqrt[12]{a^3b^3c^3}\right)^2}{a^3+b^3+c^3}\)

\(\ge\frac{18}{a^3+b^3+c^3}\)

23 tháng 12 2016

Đề bài phải là \(a^3\ge36\) nhé.

Ta có : \(\frac{a^2}{3}+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow\left[\frac{a^2}{4}-a\left(b+c\right)+\left(b+c\right)^2\right]+\frac{a^2}{12}-3bc\ge0\)

\(\Leftrightarrow\left(\frac{a}{2}-b-c\right)^2+\frac{a^3-36abc}{12a}\ge0\)

\(\Leftrightarrow\left(\frac{a}{2}-b-c\right)^2+\frac{a^3-36}{12a}\ge0\) luôn đúng với \(a^3\ge36\)

14 tháng 3 2018

Xét hiệu:   a2 + b2 + c2 - ab - ac - bc  

<=>  2(a2 + b2 + c2 - ab - ac - bc)  

<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ac + a2  

<=>  (a - b)2 + (b - c)2 + (c - a)2   >=  0 

Dấu "=" xảy ra  <=>  a = b = c   mà  abc = 1   =>  a=b=c=1    =>  a^3 = 1

mà  a^3  >  36    (mâu thuẫn)

=>   a2 + b2 + c2 - ab - ac - bc  >  0

<=>  a2 + b2 + c2 >  ab + ac + bc

P/S: mk mới nghĩ ra cách này thôi, bn đọc tham khảo

14 tháng 3 2018

Có : (a-b)^2 >= 0

<=> a^2+b^2 >= 2ab

Tương tự : b^2+c^2 >= 2bc

                  c^2+a^2 >= 2ca

=> 2.(a^2+b^2+c^2) >= 2.(ab+bc+ca)

<=> a^2+b^2+c^2 >= ab+bc+ca

Dấu "=" xảy ra <=> a=b=c và abc = 1 <=> a=b=c=1 <=> a^3 = 1 < 36 ( mâu thuẫn đề cho )

=> a^2+b^2+c^2 > ab+bc+ca

Tk mk nha

25 tháng 6 2017

bạn có viết đề sai ko?