Cho tam giác ABC nhọn có ba đường cao AD, BI, CK giao nhau tại H. Gọi chân các đường vuông góc hạ từ D xuống AB, AC lần lượt tại E, F.
a. Chứng minh rằng AE.AB=AF.AC
b. Giả sử HD =1/3 AD. Chứng minh tanB.tanC=3
c. Gọi M,N lần lượt là chân đường vuông góc kẻ từ D xuống BI, CK. Chứng minh rằng EMNF thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Dễ dàng chứng minh bằng cách áp dụng hệ thức về cạnh trong các tam giác vuông ABD và ACD :
\(AE.AB=AF.AC=AD^2\)
b/ Bạn tham khảo ở đây nhé : http://olm.vn/hoi-dap/question/633787.html
c/ Áp dụng tứ giác nội tiếp để giải (liên quan đến góc ngoài của tứ giác nội tiếp)
a, Xét \(\Delta ACF\) và \(\Delta ABE\) có:
\(\widehat{AFC}=\widehat{AEB}=90^0\)
\(\widehat{BAC}\) là góc chung
\(\Rightarrow\Delta ACF~\Delta ABE\left(g.g\right)\)
\(\Rightarrow\frac{AC}{AB}=\frac{AF}{AE}\)
\(\Rightarrow AC.AE=AB.AF\)
Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{CAB}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\)
\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)
b, Xét \(\Delta BDH\) và \(\Delta BEC\) có:
\(\widehat{EBC}\) là góc chung
\(\widehat{BEC}=\widehat{BDH}=90^0\)
\(\Rightarrow\Delta BDH~\Delta BEC\left(g.g\right)\)
\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\)
\(\Rightarrow BE.BH=BC.BD\left(1\right)\)
Tương tự như trên ta được: \(\Delta CDH~\Delta CFB\left(g.g\right)\)
\(\Rightarrow\frac{CH}{CB}=\frac{CD}{CF}\)
\(\Rightarrow CF.CH=CD.CB\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE.BH+CH.CF=BD.BC+BC.CD=BC\left(BD.CD\right)=BC^2\)
\(\Rightarrow BH.BE+CH.CF=BC^2\)
d,EI _|_ AB ; CE _|_ AB => EI // CE => AI/IF = AE/EC (đl)
EK _|_ AD; CD _|_ AD => EK // CD => AK/KD = AE/EC (đl)
=> AI/IF = AK/KD; xét tam giac AFD
=> IK // FD (1)
ER _|_ BC; AD _|_ BC => ER // AD => CR/RD = CE/EA (đl)
EQ _|_ CF; AF _|_ CF => AH // AF => CH/FH = CE/AE (đl)
=> CR/RD = CH/FH; xét tam giác CFD
=> HR // FD (2)
EK _|_ AD; AD _|_ BD => EK // BD => KH/HD = EH/HB (đl)
EH _|_ CF; CF _|_ BF => EH // FB => EH/HB = QH/HF (đl)
=> KH/HD = QH/HF
=> KH // ED (3)
(1)(2)(3) => I;K;H;R thẳng hàng (tiên đề Ơclit)
a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co
góc B chung
=>ΔBDA đồng dạng vói ΔBFC
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng vói ΔACB
c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAH chung
=>ΔAEH đồng dạng vói ΔADC
=>AD*AH=AE*AC
Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
góc ECH chung
=>ΔCEH đồng dạng vói ΔCFA
=>CH*CF=CE*CA
=>AH*AD+CH*CF=CA^2
Bạn tự vẽ hình. Gợi ý:
- Chứng minh tứ giác AEHF là hình chữ nhật.
*Gọi K là giao điểm của AH và EF. Khi đó K là trung điểm AH.
- Chứng minh tam giác AHM cân tại A. Suy ra \(\widehat{MAB}=\widehat{HAB}\)
Mặt khác \(\widehat{HAB}=\widehat{ABI}\) (BI//AH) \(\Rightarrow\widehat{MAB}=\widehat{ABI}\)
\(\Rightarrow\)△ABI cân tại I nên AI=BI.
*CA cắt BI tại S. Chứng minh I là trung điểm BS.
Đến đây bài toán đã trở nên đơn giản hơn (chỉ chú ý vào các điểm C,A,H,B,S và K).
- CK cắt BS tại I'. Khi đó ta cũng c/m được I' là trung điểm BS.
\(\Rightarrow I\equiv I'\) nên C,K,I thẳng hàng.
Suy ra đpcm.
Bạn tham khảo
https://olm.vn/hoi-dap/detail/4685026342.html
Câu hỏi của Bùi Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link này nhé!