tìm một số chính phương có 4 chữ số biết rằng số gồm hai chữ số lớn hơn số gồm hai chữ số sau 1 đơn vị
mọi người giúp đỡ nhé tui sẽ cho like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi abcd là là số cần tìm .
đặt abcd=n^2=>1000a+100b+10c+d=n^2 (1)
theo đề bài ta có : ab-cd=1=>10a+b-10c-d=1 (2)
cộng (1) và (2) theo vế ta được:
1010a+101b=n^2+1
=>101(10a+b)=n^2+1
=>n^2+1 chia hết 101=>n^2-100+101 chia hết 101 => n^2-10 chia hết 101 =>(n+10)(n-10) chia hết cho 101 vì n-10 <101 ( loại ) =>n+10 chia hết 101
vì n^2 có 4 chữ số nên 32<n<100=>n=91
vậy số cần tìm là 91^2=8281.
cs j thì k nhá
Gọi số có bốn chữ số là : abcd ( 1024 \(\le\)abcd < 1000 )
Do abcd là số chính phương => abcd = \(k^2\left(k\in N\right)\)
Theo đề bài , ta có :
\(ab-cd=1\)
\(\Rightarrow100.\left(ab-cd\right)=100\)
\(\Rightarrow100ab-100cd=100\)
\(\Rightarrow100ab-100=100cd\)
\(\Rightarrow100ab+cd-100=101cd\)( Cộng hai vế với cd )
Mà \(abcd=100ab+cd=k^2\)
\(\Rightarrow k^2-100=101cd\)
\(\Rightarrow\left(k-10\right).\left(k+10\right)=101cd\)(1)
\(\Rightarrow k-10⋮10\)hoặc \(k+10⋮10\)
Do \(1024\le abcd< 1000\)
\(\Rightarrow32^2\le k^2< 100^2\)
\(\Rightarrow32\le k< 100\Rightarrow\left(k-10,101\right)=1\) (2)
Từ (1) và (2) \(\Rightarrow k+10⋮101\)(*)
Ta có : \(32\le k< 100\)
\(\Rightarrow42\le k+10< 110\)(**)
Từ (*) và (**) \(\Rightarrow k+10=101\)
\(\Rightarrow k=101-10=91\)
\(\Rightarrow k^2=91^2=8281=abcd\)
Vậy abcd = 8281
bạn cú đánh nó lên mạng y hệt như này là nó ra đó.
mình ko sao chép đc nên bạn tự tìm nhé
Đặt abcd = k\(^2\) ta có ab - cd = 1 và k ∈ N , 32 ≤ K < 100
=> 101cd = k\(^2\) - 100 = (k-10)(k+10) = k + 10 chia hết cho 101 hoặc k- 10 chia hết cho 101
Mà ( k-10;101)=1 => k+10 chia hết cho 101
Vì 32 ≤ k < 100 nên 42 ≤ k +- 10 < 101=> k+ 10 = 101 => k = 91\(^2\)=> abcd = 91 = 8281
Đặt abcd ta có ab-cd và k N, 32 bé hơn hoặc bằng k < 100
Suy ra : 101cd = k2 – 100 = (k – 10)(k + 10) =>k + 10chia hết 101 hoặc k – 10 chia hết101
Mà (k – 10; 101) = 1 => k + 10chia hết 101
Vì 32 bé hơn hoặc bằng k < 100 nên 42 bé hơn hoặc bằng k + 10 < 110 => k + 10 = 101 => k = 91
suy ra abcd= 912 = 8281
Đặt abcd = k2
Ta có : ab - cd = 1 ( k \(\in\) N ; 32 \(\le\) k < 100 )
=> 101cd = k2 - 100 = ( k - 10 )(k - 10 )
=> k + 10 chia hết cho 101 hoặc k - 10 chia hết cho 101
Mà ( k - 10 ; 101 ) = 1 => k + 10 chia hết cho 101
=> 32 \(\le\) k < 100 => 42 \(\le\) k + 10 < 110
=> k + 10 = 101
=> k = 101 - 10
=> k = 91
=> abcd = 912 = 8281
Vậy số cần tìm là 8281
Gọi số có 4 chữ số là: abcd (có gạch ngang trên đầu) ( 1024 \(\le\) abcd < 10000)
Do abcd là số chính phương => abcd = \(k^2\) (k \(\varepsilon\) N)
Theo bài ra ta có: ab - cd = 1
=> 100.(ab - cd) = 100
=> 100ab - 100cd = 100
=> 100ab - 100= 100cd
=> 100ab + cd - 100= 101cd ( cộng 2 vế với cd)
Mà abcd= 100ab + cd = \(k^2\)
=> \(k^2\) - 100= 101cd
=> (k-10)(k+10)=101cd (1)
=> k-10 chia hết cho 10 hoặc k+10 chia hết cho 10
Do 1024 \(\le\) abcd < 1000
=> \(32^2\le k^2<100^2\)
=> 32 \(\le k<100\) => (k-10;101)=1 (2)
Từ (1) và (2)=> k+10 chia hết cho 101 (*)
Ta có: 32\(\le k<100\)
=> 42 \(\le k+10<110\) (**)
Từ (*) và (**) => k + 10 = 101
=> k= 101 - 10 = 91
=> \(k^2=91^2=8281\) = abcd
Vậy abcd = 8281