1) Giải hệ phương trình $\left\{\begin{array}{l}3 x+4 y=6 \\ 2 x-y=-7\end{array}\right.$
2) Trong mặt phẳng tọa độ $O xy$, cho đường thẳng $d: y=5 x+m$ ($m$ là tham số) và parabol $(P): y=x^{2}$.
a) Tìm giá trị của tham số $m$ để $d$ cắt $(P)$ tại hai điểm phân biệt.
b) Tìm tọa độ giao điểm của đường thẳng $d$ và $(P)$ khi $m=-4$.
1/
\(\hept{\begin{cases}3x+4y=6\left(1\right)\\2x-y=-7\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow8x-4y=-28\left(3\right)\)
Cộng 2 vế của (1) với (3) \(\Rightarrow11x=-22\Rightarrow x=-2\) Thay vào (2) \(\Rightarrow2.\left(-2\right)-y=-7\Rightarrow y=3\)
2/
a/ d cắt p tại 2 điểm phân biệt khi \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\) có 2 nghiệm phân biệt
Điều kiện \(\Delta=25+4m>0\Leftrightarrow m>-\frac{25}{4}\)
b/ Khi m=-4
\(x^2-5x+4=0\Rightarrow x_1=1;x_2=4\)
Khi m=-4 d cắt p tại 2 điểm phân biệt A(1;0) và B(4;0)