Gọi A = n2 + n +1.Chứng tỏ rằng:
a ko chia hết cho 2
a ko chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = n2 + n + 1
A = n.(n + 1) + 1
Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên \(n.\left(n+1\right)⋮2\)
Mà \(1⋮̸2\)
Do đó, \(A⋮2̸\)
b) A = n.(n + 1) + 1
Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
Do đó A chỉ có thể tận cùng là 1; 3; 7, không chia hết cho 5 (đpcm)
A=n2+n+1=n.n+n+1=n(n+1)+1
a,Vì n và (n+1) là stn liên tiếp nên một trong 2 số đó là số chẵn.
=>n(n+1) chia hết cho 2.
=>n(n+1)+1 ko chia hết cho 2
=>a ko chia hết cho 2(đpcm)
b,Vì n và (n+1) là stn liên tiếp nên chữ số tận cùng của chúng có thể là 0,2,6.
=>n(n+1)+1 có thể có chữ số tận cùng là1,3,7
=>a ko chia hết cho 5(đpcm)
\(n^2+n+1=n.\left(n+1\right)+1\)
n.(n+1) lầ 2 số tự nhiên liên tiếp nên tích chúng chia hết cho 2.
1 ko chia hết cho 2.
Vậy......
b)Sử dụng dư hoặc dùng 5k loại.
Chúc em học tốt^^
\(A=n^2+n+1\)
\(=n\left(n+1\right)+1\)
Vì n(n+1) là tích của hai số tự nhiên liên liếp nên có 1 số chẵn
nên n(n+1) là số chẵn.Suy ra:n(n+1)+1 là số lẻ và ko chia hết cho 2
Vì n(n+1) chỉ có tân còn là:0,2,6 nên n(n+1)+1 chỉ có tận cùng là:1,3,7 ko chia hết cho 5
bạn bấm vào dòng chữ xanh này nhé
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
n 2+n+1 = n(n + 1) +1.
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6
Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.
Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5
Vậy n 2+n+1 không chia hết cho 2 và 5
1)Các số chia cho 5 dư 3 có tận cùng là 3 hoặc 8. Mỗi chục có 2 số. Vậy có tất cả:2.10=20(số)
2)Xét 2 trường hợp n lẻ và n chẵn
3)SGK
a) n(n+1) chia hết 2 vì n(n+1) là tích của 2 số tự nhiên liên tiếp. Do đó n(n+1)+1 ko chia hết cho 2
b) n^2+n+1=n(n+1)+1
Ta có: n(n+1) là tích của hai số tự nhiên liên tiếp nên tận cùng là 0;2;6. Suy ra n(n+1)+1 tận cùng = 1;3;7 ko chia hết cho 5
\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)
\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)
\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)
\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)
\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)
mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5
\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)
\(B=4+4^2+4^3+...+4^{99}\)
\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)
\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)
\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)
\(\Rightarrow dpcm\)
Bài 1:
B = 1 + 2 + 3 + 4 + ... + 2001
= (2001 + 1) . (2001 - 1 + 1) : 2
= 2002 . 2001 : 2
= 2003001
Vậy B không chia hết cho 2
Bài 2:
*) Số 10¹⁰ + 8 = 10000000008
- Có chữ số tận cùng là 8 nên chia hết cho 2
- Có tổng các chữ số là 1 + 8 = 9 nên chia hết cho cả 3 và 9
Vậy 10¹⁰ + 8 chia hết cho cả 2; 3 và 9
*) 10¹⁰⁰ + 5 = 1000...005 (99 chữ số 0)
- Có chữ số tận cùng là 5 nên chia hết cho 5
- Có tổng các chữ số là 1 + 5 = 6 nên chia hết cho 3
Vậy 10¹⁰⁰ + 5 chia hết cho cả 3 và 5
b) 10⁵⁰ + 44 = 100...0044 (có 48 chữ số 0)
- Có chữ số tận cùng là 4 nên chia hết cho 2
- Có tổng các chữ số là 1 + 4 + 4 = 9 nên chia hết cho 9
Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9
B1 :
\(B=1+2+3+4+...+2001\)
\(B=\left[\left(2001-1\right):1+1\right]\left(2001+1\right):2\)
\(B=2001.2002:2=2003001\)
- Tận cùng là 1 nên B không chia hết cho 2
- Tổng các chữ số là 2+3+1=6 chia hết cho 3 nên B chia hết cho 3, không chia hết ch0 9
- Ta lấy \(2.3=6+0=6.3+0-14=4.3+3-14=1.3+0=3.3+0-7=2.3+1=7⋮7\) \(\Rightarrow B⋮7\)
-2/x=x/-8/25
a) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)⋮2\)vì \(n\left(n+1\right)\)là tích 2 số TN liên tiếp . Do đó \(n\left(n+1\right)+1\)không chia hết cho 2
b) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)\)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra \(n\left(n+1\right)\)tận cùng bằng 1,3,7 không chia hết cho 5