Cho tam giác ABC có góc BAC=70°. Tia phân giác của góc BAC cắt BC ở D. Qua B kẻ đường thẳng song song với AD, cắt đường thẳng AC ở E. Tính góc AEB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
các bạn tự vẽ hình, bài này đơn giản: vì AD//ME nên góc E = góc A2 (đồng vị)
và góc F2 = góc A1 (đồng vị)
mà góc A1 = góc A2 (T/c phân giác) nên E = F2 , mặt khác góc F1 = góc F2 (đối đỉnh)
nên suy ra góc E = góc F1 hay là góc AFE = AEF (điều phải chứng minh)
Ta có : \(A\widehat{_1}\)=\(\widehat{ADE}\)( 2 góc so le trong , DE // AB ) (1)
\(\widehat{A_1}=\widehat{A_2}\) ( Góc phân giác của góc A ) (2)
Từ ( 1) và (2) suy ra : \(\widehat{ADE}\)=\(\widehat{A_2}\)
=> \(\Delta\)ADE là tam giác cân
Có AD là tia phân giác góc BAC => Góc BAD = góc BAC/2=70/2=35 độ
có BE // AD => góc BAD= góc ABE = 35 độ ( so le trong )
Có góc BAC + góc BAE = 180 độ ( kề bù )
=> góc BAE = 180 độ - góc BAC = 180 - 70 = 110 độ
Có BAE + ABE + AEB = 180 độ ( tổng 3 góc tam giác AEB )
=> AEB = 180 - BAE - ABE = 180 -110-35=35 độ