Tìm các chữ số a,b,c trong số thập phân 0,abc (a,b,c khác nhau và khác 0).Biết 0,abc=1:(a+b+c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm các chữ số a, b ,c trong số thập phân 0. abc( a b c khác nhau và khác 0)
Biết 0. abc= 1: ( a+b+c)
Ta có: \(1\div\left(a+b+c\right)=\overline{0,abc}=\frac{\overline{abc}}{1000}\)
\(\Leftrightarrow\overline{abc}\times\left(a+b+c\right)=1000\)
Vì \(\overline{abc}\)là số có ba chữ số nên ta có các cách phân tích sau:
\(1000=500\times2=250\times4=200\times5=125\times8=100\times10\)
Thử từng trường hợp trong các trường hợp trên, chỉ có \(\overline{abc}=125\)là thỏa mãn.
\(\Rightarrow\dfrac{100xa+10xb+c}{1000}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\dfrac{\overline{abc}}{1000}=\dfrac{1}{a+b+c}\Rightarrow\overline{abc}=\dfrac{1000}{a+b+c}\)
Do \(\overline{abc}\) là số có 3 chữ số \(\Rightarrow\overline{abc}>100\)
\(\Rightarrow\dfrac{1000}{a+b+c}>100\Rightarrow a+b+c< 1000:100=10\)
Do \(\overline{abc}\) là số nguyên \(\Rightarrow1000⋮a+b+c\)
=> a+b+c=2 hoặc a+b+c=4 hoặc a+b+c=5 hoặc a+b+c=8
Thử với từng trường hợp ta có a+b+c=8 => \(\overline{abc}=125\) thỏa mãn yêu cầu của đề bài
Chia đôi 1444 : 2 = 722, từ đó dễ dàng tìm được a = 7
b phải lớn hơn 2 (nếu b = 2 thì c cũng là 2), b cũng không thể là 4 (nếu b = 4 thì c = 0), do vậy b = 3, suy ra c = 1
Vậy a = 7, b = 3 , c = 1
abc =731
acb=713
(do a#b#c; b>c>0; b+c=4 => b=3;c=1\\\\a+a=14=>a=7)
\(0,abc=\frac{1}{a+b+c}\) = \(\frac{abc}{1000}=\frac{1}{a+b+c}\) = \(\frac{abc}{1000}=\frac{abc}{abcX\left(a+b+c\right)}\)
Vậy : 1000 = abc x ( a+b+c )
ta có : 1000 = 500x2 100=250x4
1000=200x5 1000=125x8 1000=100x10
vì a,b,c khác nhau và khác 0 nên ta chỉ xét trường hợp:
1000=125x8
ta có : abc x ( a+b+c ) = 125x8
chọn abc = 125 ; a+b+c = 8
Vậy: a=1 ; b=2 ; c=5
thay vào đề bài ta được :
\(0,125=\frac{1}{1+2+5}\)
0,abc = 1: (a + b + c)
=> \(\frac{abc}{1000}=\frac{1}{a+b+c}\) => abc . (a+b +c) = 1000
Viết 1000 = 500.2 = 250.4 = 125.8 = 200 .5 = 100.10
thủ các cặp số trên, chỉ cố abc = 125 thỏa mãn
Vậy a = 1; b = 2; c = 5
nhu tren