K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Thay x=4 vào (P), ta được:

\(y=\dfrac{4^2}{2}=\dfrac{16}{2}=8\)

Thay x=4 và y=8 vào (d), ta được:

\(m\cdot4-m+2=8\)

\(\Leftrightarrow3m=6\)

hay m=2

Vậy: m=2

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{x^2}{2}=mx-m+2\)

\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)

\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)\)

\(=m^2-2\left(m-2\right)\)

\(=m^2-2m+4\)

\(=m^2-2m+1+3\)

\(=\left(m-1\right)^2+3>0\forall m\)

Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)

10 tháng 2 2021

kiểm tra lại đề nhé lỗi quá

1 tháng 3 2022

???

1 tháng 3 2022

what?

a: PTHĐGĐ là;

-1/4x^2-mx+m+2=0

=>1/4x^2+mx-m-2=0

=>x^2+4mx-4m-8=0

\(\text{Δ}=\left(4m\right)^2-4\left(-4m-8\right)\)

\(=16m^2+16m+32\)

\(=16m^2+2\cdot4m\cdot2+4+28=\left(4m+2\right)^2+28>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: \(A=x_1\cdot x_2\left(x_1+x_2\right)\)

\(=4m\left(4m+8\right)\)

\(=\left(16m^2+32m+16-16\right)\)

\(=\left(4m+4\right)^2-16>=-16\)

Dấu = xảy ra khi m=-1

23 tháng 2 2023

 

\

12 tháng 3 2023

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=mx+5\)

\(x^2-mx-5=0\)

\(\Delta=m^2+20\)

Vì \(\Delta>0\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Vậy đường thẳng (d) và (P) luôn cắt nhau tại 2 điểm phân biệt

Câu tìm m bạn ghi rõ đề ra nhá

12 tháng 3 2023

đề ns z á chắc đề sai đâu r cảm ơn bn nhiều 

a: PTHĐGĐ là:

x^2-2x-|m|-1=0

a*c=-|m|-1<0

=>(d)luôn cắt (P) tại hai điểm phân biệt

b: Bạn bổ sung lại đề đi bạn

6 tháng 5 2017

Phương trình hoành độ giao điểm của (P) và (d) là \(^{x^2+mx-1=0}\)luông có hai nghiệm phân biệt (vì ac<0)

Tổng và tích hai nghiệm xa, xb là:

xa +  xb = -m

x. xb = -1

Ta có: xa2xb + xb2xa - xaxb = 3 \(\Leftrightarrow\)xaxb(xa + xb) - xaxb = 3 \(\Leftrightarrow\)m + 1 = 3 \(\Leftrightarrow\)m = 2

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

a: Thay m=3 vào (d), ta được:

y=3x-3+1=3x-2

Tọa độ giao điểm của (P) và (d) là:

\(\left\{{}\begin{matrix}x^2-3x+2=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-2\right)=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(1;1\right);\left(2;4\right)\right\}\)

b: Phương trình hoành độ giao điểm là:

\(x^2-mx+m-1=0\)

Để (P) cắt (d) tại hai điểm về hai phía của trục tung thì m-1<0

hay m<1

c: Để (P) cắt (d) tại hai điểm phân biệt có hoành độ dương thì 

\(\left\{{}\begin{matrix}\left(-m\right)^2-4\left(m-1\right)>0\\m>0\\m-1>0\end{matrix}\right.\Leftrightarrow m>1\)