Phân tích đa thức thành nhân tử:
\(x^3+6x^2+12x+8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)
=(x^3+6x^2+12x+8)+y^3
=(x^3+3x^2+3x2^2+2^3)+y^3
=(x+2)^3+y^3
=(x+2+y)((x+2)^2-(x+2)y+y^2)
=(x+2+y)(x^2+4x+4-xy-2y+y^2)
=(x+2+y)(x^2+y^2-xy+4x-2y+4)
x3 - 6x2 + 12x - 8
= x3 - 2x2 - 4x2 + 4x + 8x - 8
= (x3 - 2x2) - (4x2 - 8x) + (4x - 8)
= x2.(x - 2) + 4x.(x - 2) + 4.(x - 2)
= (x - 2).(x2 + 4x + 4)
= (x - 2).(x2 + 2x + 2x + 4)
= (x - 2).[x.(x + 2) + 2.(x + 2)]
= (x - 2).(x + 2).(x + 2)
= (x - 2).(x + 2)2
a: \(x^2+12x+36=0\)
=>\(x^2+2\cdot x\cdot6+6^2=0\)
=>\(\left(x+6\right)^2=0\)
=>x+6=0
=>x=-6
b: \(4x^2-4x+1=0\)
=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
=>\(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>x=1/2
c: \(x^3+6x^2+12x+8=0\)
=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)
=>\(\left(x+2\right)^3=0\)
=>x+2=0
=>x=-2
x3 - 6x2 + 12x - 8
= x3 - 2x2 - 4x2 + 4x + 8x - 8
= (x3 - 2x2) - (4x2 - 8x) + (4x - 8)
= x2.(x - 2) + 4x.(x - 2) + 4.(x - 2)
= (x - 2).(x2 + 4x + 4)
= (x - 2).(x2 + 2x + 2x + 4)
= (x - 2).[x.(x + 2) + 2.(x + 2)]
= (x - 2).(x + 2).(x + 2)
= (x - 2).(x + 2)2
\(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)
\(x^3+y^3+6x^2+12x+8\)
=\(x^3+3.2.x^2+3.2^2.x+2^3+y^3\)
\(=\left(x+2\right)^3+y^3=\left(x+2+y\right)\left(\left(x+2\right)^2-\left(x+2\right)y+y^2\right)\)
\(=\left(x+y+2\right)\left(x^2+4x+4-xy-2y-y^2\right)\)
a) \(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b) \(-x^3-3x^2-3x-1=-\left(x^3+3x^2+3x+1\right)=-\left(x+1\right)^3\)
c) \(-8+12x-6x^2+x^3=\left(x-2\right)^3\)
đưa về dạng hằng đẳng thức thứ 4 lập phương của 1 tổng
\(x^3+6x^2+12x+8\)
\(=\left(x+2\right)^3\)
\(x^3+6x^2+12x+8=x^3+2.3x^2+2.3^2x+2^3=\left(x+2\right)^3\)
xong ròi k1 mình nha bn thanks