Cho tam giác ABC, trên tia đối của BC lấy D sao cho BD=BA. Trên tia đối CB lấy E sao cho CE=CA.
Kẻ BH vuông góc với AD, CK vuông góc với AE.
a) AH=HD
b) HK song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Dođó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK và AH=AK
Xét ΔADE có
AH/AD=AK/AE
Do đó: HK//DE
hay HK//BC
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
a:
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a,b: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE và góc D=góc E; góc DAB=góc EAC
Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
Xét tg abh và dbh có : góc h vuông , BB chung , bd =ba , suy ra 2tg = ( cạnh huyền cạnh góc vuông) nên ah=dh
Tương tự có ak =ek , suy ra h là trung điểm của ad , k là trung điểm ae suy ra đường trung bình suy ra HK song song với DE nên hướng song với bc
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
Xét tam giác cân ABD có đường cao BH đồng thời là trung tuyến. Vậy H là trung điểm AD.
Tương tự K là trung điểm AE
Xét tam giác ADE có H, K lần lượt là trung điểm hai cạnh nên HK là đường trung bình tam giác ADE.
\(\Rightarrow\) HK // DE.
Bài 1:
a, Kéo dài BH cắt AC tại K
\(\Delta AHB=\Delta AHK\left(g.c.g\right)\Rightarrow\hept{\begin{cases}AB=AK=12cm\\HB=HK\end{cases}}\)
Ta có: \(KC=AC-AK=18-12=6\left(cm\right)\)
HM là đường trung bình của \(\Delta BKC\Rightarrow HM=\frac{1}{2}KC=\frac{1}{2}.6=3\left(cm\right)\)
Chúc bạn học tốt.
a) Xét tam giác AHB và tam giác DHB có :
\(\widehat{AHB}=\widehat{DHB}=90\)
HB là cạnh chung
AB = DB ( Giả thiết )
\(\Rightarrow\)Tam giác AHB = Tam giác DHB ( Cạnh huyền cạnh góc vuông )
\(\Rightarrow\)AH = HD ( Hai cạnh tương ứng ) ( 1 )
b) Xét tam giác AKC và tam giác AEK có :
\(\widehat{AKC}=\widehat{EKC}=90\)
CK là cạnh chung
AC = EC ( GIả thiết )
\(\Rightarrow\)Tam giác AKC = Tam giác EKC ( Cạnh huyền cạnh góc vuông )
\(\Rightarrow\)AK = KE ( Hai cạnh tương ứng ) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)HK là đường trung bình của tam giác ADE
\(\Rightarrow\)HK song song với BC