K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

Bài 1:

a, Kéo dài BH cắt AC tại K

\(\Delta AHB=\Delta AHK\left(g.c.g\right)\Rightarrow\hept{\begin{cases}AB=AK=12cm\\HB=HK\end{cases}}\)

Ta có: \(KC=AC-AK=18-12=6\left(cm\right)\)

HM là đường trung bình của \(\Delta BKC\Rightarrow HM=\frac{1}{2}KC=\frac{1}{2}.6=3\left(cm\right)\)

Chúc bạn học tốt.

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

11 tháng 7 2021

11 tháng 7 2021

cắt góc sát đấy

28 tháng 9 2017

a) Xét tam giác AHB và tam giác DHB có :

\(\widehat{AHB}=\widehat{DHB}=90\)

HB là cạnh chung

AB = DB ( Giả thiết )

\(\Rightarrow\)Tam giác AHB = Tam giác DHB ( Cạnh huyền cạnh góc vuông )

\(\Rightarrow\)AH = HD ( Hai cạnh tương ứng ) ( 1 )

b) Xét tam giác AKC và tam giác AEK có :

\(\widehat{AKC}=\widehat{EKC}=90\)

CK là cạnh chung

AC = EC ( GIả thiết )

\(\Rightarrow\)Tam giác AKC = Tam giác EKC ( Cạnh huyền cạnh góc vuông )

\(\Rightarrow\)AK = KE ( Hai cạnh tương ứng ) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)HK là đường trung bình của tam giác ADE

\(\Rightarrow\)HK song song với BC 

a: Xét ΔABD và ΔACE có

AB=AC
góc ABD=góc ACE
BD=CE

=>ΔABD=ΔACE

=>AD=AE

=>ΔADE cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔAHB=ΔAKC

=>AH=AK

Xét ΔADE có AH/AD=AK/AE

nên HK//DE

c:

góc HBD+góc D=90 độ

góc KCE+góc E=90 độ

mà góc D=góc E

nên góc HBD=góc KCE

góc MBC=góc HBD

góc MCB=góc KCE
mà góc HBD=góc KCE

nên góc MBC=góc MCB

=>ΔMBC cân tại M

12 tháng 9 2017

đâu trả lời xem nào

7 tháng 2 2018

Xét tam giác cân ABD có đường cao BH đồng thời là trung tuyến. Vậy H là trung điểm AD.

Tương tự K là trung điểm AE

Xét tam giác ADE có H, K lần lượt là trung điểm hai cạnh nên HK là đường trung bình tam giác ADE.

\(\Rightarrow\) HK // DE.

a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có 

BA=BD(Gt)

BH chung

Do đó: ΔAHB=ΔDHB(cạnh huyền-cạnh góc vuông)

Suy ra: AH=DH(hai cạnh tương ứng)

Xét ΔAKC vuông tại K và ΔEKC vuông tại K có 

CA=CE(gt)

CK chung

Do đó: ΔAKC=ΔEKC(Cạnh huyền-cạnh góc vuông)

Suy ra: KA=KE(Hai cạnh tương ứng)

Xét ΔADE có 

\(\dfrac{AH}{HD}=\dfrac{AK}{KE}\left(=1\right)\)

nên HK//DE(Định lí Ta lét đảo)