phân tích đa thức thành nhân tử:
(a+b+c)2+(a+b-c)2-4c2
giải hộ mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình tính thử a ,b ,c bằng nhau đó
Mình nghĩ là 0,037037037037037037
\(a,\left(a+b\right)^3+\left(a-b\right)^3\)
\(=\left(a+b+a-b\right)[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2]\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)
\(=2a\left(a^2+3b^2\right)\)
\(b,9x^2+6xy+y^2\)
\(=\left(3x\right)^2+2.3x.y+y^2\)
\(=\left(3x+y\right)^2\)
\(c,4x^2-25\)
\(=\left(2x\right)^2-5^2\)
\(=\left(2x-5\right)\left(2x+5\right)\)
a) \(\left(a+b\right)^3+\left(a+b\right)^3\)
\(=\left(a+b+a+b\right)\left[\left(a+b\right)^2-2\left(a+b\right)^2+\left(a+b\right)^2\right]\)
\(=2\left(a+b\right)\left[\left(a+b\right)^2\left(1-2+1\right)\right]\)
\(=2\left(a+b\right)\)
b) \(9x^2+6xy+y^2\)
\(=\left(3x+y\right)^2\)
\(=\left(3x+y\right)\left(3x+y\right)\)
c) \(4x^2-25\)
\(=\left(2x\right)^2-5^2\)
\(=\left(2x+5\right)\left(2x-5\right)\)
sử dụng hàng đẳng thức a^2-b^2
=(2bc+b^2+c^2-a^2)(2ab-b^2-C^2+a^20)
Bạn ơi bạn có thể ghi câu trả lời ra cụ thể giúp mình có được không ạ ?
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
\(=a\left(b+c\right)^2-b\left(c+a\right)^2\left[\left(b-c\right)+\left(a-b\right)\right]+c\left(a+b\right)^2\left(a-b\right)\)
\(=a\left(b+c\right)^2\left(b-c\right)-b\left(c+a\right)^2\left(b-c\right)-b\left(c+a\right)^2\left(a-b\right)+c\left(a+b\right)^2\left(a-b\right)\)
\(=\left(b-c\right)\left[a\left(b+c\right)^2-b\left(c+a\right)^2\right]-\left(a-b\right)\left[b\left(c+a\right)^2-c\left(b+c\right)^2\right]\)
\(=\left(b-c\right)\left(ab^2+ac^2-bc^2-ba^2\right)-\left(a-b\right)\left(bc^2+ba^2-ca^2-cb^2\right)\)
\(=\left(b-c\right)\left[-ab\left(a-b\right)+c^2\left(a-b\right)\right]-\left(a-b\right)\left[-bc\left(b-c\right)+a^2\left(b-c\right)\right]\)
\(=\left(b-c\right)\left(c^2-ab\right)\left(a-b\right)-\left(a-b\right)\left(a^2-bc\right)\left(b-c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c^2-ab-a^2+bc\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(c-a\right)\left(a+c\right)+b\left(c-a\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
phân tích đa thức thành nhân tử
a^2(b-c)+b^2(c-a)+c^2(a-b)
= -(b-a)(c-a)(c-b)
nha bạn
a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2(a-b)
=(a2b-b2a)-(a2c-b2c)+c2(a-b)
=ab(a-b)+c(a2-b2)+c2(a-b)
=ab(a-b)+c(a-b)(a+b)+c2(a-b)
=(a-b)(ab+ac+bc+c2)
=(a-b)[(ab+bc)+(ac+c2)]
=(a-b)[b(a+c)+c(a+c)]
=(a-b)(a+c)(b+c)
ta có: \(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2=\left(a+b+c\right)^2+\left(a+b-c-2c\right)\left(a+b-c+2c\right).\)
\(=\left(a+b+c\right)^2+\left(a+b-3c\right)\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a+b+c+a+b-3c\right)\)
\(=2\left(a+b+c\right)\left(a+b-c\right)\)
(a+b+c)^2+(a+b-c)^2-4c^2
=(a^2+b^2+c^2+2ab+2bc+2ac)+(a^2-2ab+b^2-2ac+c^2-abc)-4c^2
=a^2+b^2+c^2+2ab+2bc+2ac+a^2-2ab+b^2-2ac+c^2-abc-4c^2
=(a^2+a^2)+(b^2+b^2)+(c^2+c^2)+(2ab-2ab)+(2bc-2bc)+(2ac-2ac)-4c^2
=2a^2+2b^2+2c^2-4c^2
=(2a^2+2b^2)+(2c^2-4c^2)
=2*(a^2+b^2)+2c^2*(1-2)