K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)

\(=a\left(b+c\right)^2-b\left(c+a\right)^2\left[\left(b-c\right)+\left(a-b\right)\right]+c\left(a+b\right)^2\left(a-b\right)\)

\(=a\left(b+c\right)^2\left(b-c\right)-b\left(c+a\right)^2\left(b-c\right)-b\left(c+a\right)^2\left(a-b\right)+c\left(a+b\right)^2\left(a-b\right)\)

\(=\left(b-c\right)\left[a\left(b+c\right)^2-b\left(c+a\right)^2\right]-\left(a-b\right)\left[b\left(c+a\right)^2-c\left(b+c\right)^2\right]\)

\(=\left(b-c\right)\left(ab^2+ac^2-bc^2-ba^2\right)-\left(a-b\right)\left(bc^2+ba^2-ca^2-cb^2\right)\)

\(=\left(b-c\right)\left[-ab\left(a-b\right)+c^2\left(a-b\right)\right]-\left(a-b\right)\left[-bc\left(b-c\right)+a^2\left(b-c\right)\right]\)

\(=\left(b-c\right)\left(c^2-ab\right)\left(a-b\right)-\left(a-b\right)\left(a^2-bc\right)\left(b-c\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c^2-ab-a^2+bc\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[\left(c-a\right)\left(a+c\right)+b\left(c-a\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

10 tháng 7 2019

mk ko bt

1 tháng 11 2018

\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2-a^3-b^3-c^3+4abc\)

\(=a\left(b-c\right)^2-a^3+4abc+b\left(c-a\right)^2-b^3+c\left(a-b\right)^2-c^3\)

\(=a\left[\left(b-c\right)^2+4bc-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)

\(=a\left[\left(b+c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)

\(=a\left(b+c+a\right)\left(b+c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[a\left(b+c+a\right)+b\left(c-a-b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[ab+ac+a^2+bc-ab-b^2\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[c\left(a+b\right)+\left(a-b\right)\left(a+b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left(a+b\right)\left(a-b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(a-b+c\right)\left[b^2-\left(a-c\right)^2\right]\)

\(=\left(a-b+c\right)\left(b+a-c\right)\left(b-a+c\right)\)

14 tháng 6 2018

a) \(\left(a+b\right)^3+\left(a+b\right)^3\)

\(=\left(a+b+a+b\right)\left[\left(a+b\right)^2-2\left(a+b\right)^2+\left(a+b\right)^2\right]\)

\(=2\left(a+b\right)\left[\left(a+b\right)^2\left(1-2+1\right)\right]\)

\(=2\left(a+b\right)\)

b)  \(9x^2+6xy+y^2\)

\(=\left(3x+y\right)^2\)

\(=\left(3x+y\right)\left(3x+y\right)\)

c)  \(4x^2-25\)

\(=\left(2x\right)^2-5^2\)

\(=\left(2x+5\right)\left(2x-5\right)\)

15 tháng 7 2015

nhân tung \(\left(a^2-b\right)\left(b^2-c\right)\left(c^2-a\right)\) ra đề rồi viết ngược lại =.=

25 tháng 7 2016

làm rõ giùm đi bạn

18 tháng 10 2019

(a-b)+ (b-c)+ (c-a)3

=a- 3a2b + 3ab2- b+ b- 3b2c + 3bc2- c+ c- 3c2a + 3ca2- a3

=(-3a2b) + 3ab2 - 3b2c + 3bc2 - 3c2a +3ca2

=(-3a2b) + 3(ab2 - b2c + bc2 - c2a + ca2)

=(-3a2b) + 3[ab2 - b(bc - c2) - c(ca - a2)]

18 tháng 4 2023

(b-a)*(c-a)*(c-b)*(c+b+a)

18 tháng 4 2023

Bạn ơi bạn có thể ghi câu trả lời ra cụ thể giúp mình có được không ạ ?

10 tháng 7 2016

ap dung :(a-b-c)^2=a^2+b^2+c^2-2ab-2bc-2ca

ta dc:A=(a^2)^2+(b^2)^2+(c^2)^2-2.a^2.b^2-2.b^2-c^2-2.c^2.a^a

=>a=(a^2-b^2-c^2)^2