Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2-a^3-b^3-c^3+4abc\)
\(=a\left(b-c\right)^2-a^3+4abc+b\left(c-a\right)^2-b^3+c\left(a-b\right)^2-c^3\)
\(=a\left[\left(b-c\right)^2+4bc-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)
\(=a\left[\left(b+c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)
\(=a\left(b+c+a\right)\left(b+c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[a\left(b+c+a\right)+b\left(c-a-b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[ab+ac+a^2+bc-ab-b^2\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[c\left(a+b\right)+\left(a-b\right)\left(a+b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left(a+b\right)\left(a-b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(a-b+c\right)\left[b^2-\left(a-c\right)^2\right]\)
\(=\left(a-b+c\right)\left(b+a-c\right)\left(b-a+c\right)\)
a) \(\left(a+b\right)^3+\left(a+b\right)^3\)
\(=\left(a+b+a+b\right)\left[\left(a+b\right)^2-2\left(a+b\right)^2+\left(a+b\right)^2\right]\)
\(=2\left(a+b\right)\left[\left(a+b\right)^2\left(1-2+1\right)\right]\)
\(=2\left(a+b\right)\)
b) \(9x^2+6xy+y^2\)
\(=\left(3x+y\right)^2\)
\(=\left(3x+y\right)\left(3x+y\right)\)
c) \(4x^2-25\)
\(=\left(2x\right)^2-5^2\)
\(=\left(2x+5\right)\left(2x-5\right)\)
nhân tung \(\left(a^2-b\right)\left(b^2-c\right)\left(c^2-a\right)\) ra đề rồi viết ngược lại =.=
(a-b)3 + (b-c)3 + (c-a)3
=a3 - 3a2b + 3ab2- b3 + b3 - 3b2c + 3bc2- c3 + c3 - 3c2a + 3ca2- a3
=(-3a2b) + 3ab2 - 3b2c + 3bc2 - 3c2a +3ca2
=(-3a2b) + 3(ab2 - b2c + bc2 - c2a + ca2)
=(-3a2b) + 3[ab2 - b(bc - c2) - c(ca - a2)]
Bạn ơi bạn có thể ghi câu trả lời ra cụ thể giúp mình có được không ạ ?
ap dung :(a-b-c)^2=a^2+b^2+c^2-2ab-2bc-2ca
ta dc:A=(a^2)^2+(b^2)^2+(c^2)^2-2.a^2.b^2-2.b^2-c^2-2.c^2.a^a
=>a=(a^2-b^2-c^2)^2
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
\(=a\left(b+c\right)^2-b\left(c+a\right)^2\left[\left(b-c\right)+\left(a-b\right)\right]+c\left(a+b\right)^2\left(a-b\right)\)
\(=a\left(b+c\right)^2\left(b-c\right)-b\left(c+a\right)^2\left(b-c\right)-b\left(c+a\right)^2\left(a-b\right)+c\left(a+b\right)^2\left(a-b\right)\)
\(=\left(b-c\right)\left[a\left(b+c\right)^2-b\left(c+a\right)^2\right]-\left(a-b\right)\left[b\left(c+a\right)^2-c\left(b+c\right)^2\right]\)
\(=\left(b-c\right)\left(ab^2+ac^2-bc^2-ba^2\right)-\left(a-b\right)\left(bc^2+ba^2-ca^2-cb^2\right)\)
\(=\left(b-c\right)\left[-ab\left(a-b\right)+c^2\left(a-b\right)\right]-\left(a-b\right)\left[-bc\left(b-c\right)+a^2\left(b-c\right)\right]\)
\(=\left(b-c\right)\left(c^2-ab\right)\left(a-b\right)-\left(a-b\right)\left(a^2-bc\right)\left(b-c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c^2-ab-a^2+bc\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(c-a\right)\left(a+c\right)+b\left(c-a\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)