K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4

a) Vì Δ ABC vuông tại A và AB = AC nên Δ ABC vuông cân tại A

=> góc ABH và góc ACH bằng 45o 

Xét ΔAHB và ΔAHC có:

góc ABH bằng góc ACH (c/m trên)

AB=AC (gt)

BH=HC (H là trung điểm BC)

=> ΔAHB=ΔAHC (c.g.c)

5 tháng 4

b) Vì ΔABC vuông tại A có AH là đường trung tuyến ứng với cạnh huyền BC (H là trung điểm BC)

=> AH = BH = HC = 1/2BC

=> ΔAHC cân tại H

mà ΔAHC có góc HCA bằng 45o (ΔABC vuông cân tại A ở câu a)

=> ΔAHC vuông cân tại H

=> AH vuông góc với BC

10 tháng 4 2020

.  + vì tam giác ABC là tam giác cân

=> AB=AC ( hai cạnh bên bằng nhau)

Lại có: vì góc AHC bằng 90(gt) (1)

            Mà: AHBAHC= 180( hai góc kề bù)

           Từ (1) và (2) ta suy ra:

           AHB= 90và tam giác AHB là tam giác vuông

a) xét tam giác vuông ABH và tam giác ACH:

                  AB= AC ( cmt)

           Và AHBAHC= 90( cmt)

      => tam giác ABH= tam giác ACH( ch-gv)

      Do đó: BH = CH ( hai cạnh tương ứng)

     Vậy: H là trung điểm của BC ( đpcm)

( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘

CHÚC BẠN HỌC TỐT NHA!

12 tháng 4 2020

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

\(AB=AC\)\((\Delta ABC\)cân \()\)

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)

\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )

\(\Rightarrow\)H là trung điểm của BC

b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :

\(BM=CN\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)

\(BH=HC\left(cmt\right)\)

\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)

\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )

mà \(\widehat{BMH}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{CNH}=90^o\)

\(\Rightarrow HN\perp AC\)

a: Xét ΔAHB và ΔAHC có

AH chung

HB=HC

AB=AC

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là tia phân giác

b: Xét ΔAIH và ΔAKH có 

AI=AK

\(\widehat{IAH}=\widehat{KAH}\)

AH chung

Do đó; ΔAIH=ΔAKH

Suy ra: \(\widehat{AIH}=\widehat{AKH}=90^0\)

hay HK\(\perp\)AC

13 tháng 4 2017

a)Xét tam giác AHB và tam giác AHC,có

AB=AC (gt)

Góc B=Góc C(hai góc ở đáy của tam giác ABC)

AH là cạnh chung

Do đó tam giác AHB= tam giác AHC(c.g.c)

b)Vì tam giác AHB=tam giác AHC(câu a)

suy ra góc AHB=góc AHC (hai góc tương ứng)

lại có Góc AHB+AHC=1800(hai góc kề bù)mà Góc AHB=AHC (cmt)

suy ra Góc AHB=900

suy ra AH vuông góc BC

16 tháng 2 2018

a) Xét t/g AHB & t/g AHC :
* AB = AC ( gt ) 
* BH = CH ( H là trung điểm )
* AH chung 
=> t/g AHB = t/g AHC 
b )

*Ta có : 
Góc AHB = AHC ( t/g AHB = t/g AHC )
mà AHB + AHC = 180 ( kb )
=> AHB = AHC = 180 /2= 90 
=> BH vuông góc BC 
* Góc BAH = CAH ( t/g AHB = t/g AHC )
=> AH là p/g BAC 
c) 
Xét t/g AOE và t/g AOF :
* AE = AF ( gt )
* AO chung 
* Góc EAO = FAO ( t/g _=_)
=> T/g AOE = t/g AOF 
d) .... 
Buồn buồn làm chơi ..
 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔABC có

H là trung điểm của CB

HD//AB

=>D là trung điểm của AC

ΔAHC vuông tại H có HD là trung tuyến

nên DH=DC

=>ΔDHC cân tại D

=>DM vuông góc HC

=>DM//AH

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

19 tháng 3 2022

Mình cần câu d với e thôi nha

19 tháng 3 2022

2 câu d,e mỗi câu 5 coin ạ 

Ai lm đc câu nào giúp em với ạ

2 tháng 2 2021

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

2 tháng 2 2021

vaidaibangioithe))):