Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AB=\sqrt{6^2+8^2}=10\left(cm\right)\)
BH<AH<AB
=>góc HAB<góc HBA<góc AHB
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
c: góc KAH=góc HAC
góc KHA=góc HAC
=>góc KAH=góc KHA
=>ΔAKH cân tại K
Xét ΔABC có
H là trung điểm của BC
HK//AC
=>K là trung điểm của AB
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó:ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
b: Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC
Trả lời:
P/s: Xin lỗi nha!~Chỉ đc mỗi câu a!!!~
a) Theo giả thiết ta có :
AH là đường trung tuyến ⇒BH=HC⇒BH=HC
xét ΔAHBΔAHB và ΔAHCΔAHC có:
AB=ACAB=AC (gt)
AHAH chung
BH=HCBH=HC ( cmt)
⇒ΔAHB=ΔAHC⇒ΔAHB=ΔAHC (c.c.c)
⇒AHBˆ=AHCˆ⇒AHB^=AHC^ (2 góc tương ứng )
~Học tốt!~
b , Ta có : HB +HC= Bc
mà : HB=HC (GT)
=> HB=HC=\(\frac{BC}{2}\)=\(\frac{4}{2}\)= 2
Ta có : \(\Delta ABH\)vuông tại H
=> \(AB^2\)= \(BH^2\)+ \(AH^2\)( Định lí Py-ta-go)
=> 62 = 22 + AH2
=> AH2 = 62 - 22
=> AH2 = 32
=> AH \(\approx\) 5,7 cm
a: Xet ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của CB
HD//AB
=>D là trung điểm của AC
ΔAHC vuông tại H có HD là trung tuyến
nên DH=DC
=>ΔDHC cân tại D
=>DM vuông góc HC
=>DM//AH