CHO a , b EN BIẾT A*B = 0
và a +4b = 41
tìm ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk làm thế này ko bit có đúng ko?
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right).\)
\(\Rightarrow ab+bc+ac=-5\)
\(\Rightarrow\left(ab+bc+ac\right)^2=25\Rightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=25.\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=25.\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=25\)
Mặt khác:
\(a^2+b^2+c^2=10\Rightarrow\left(a^2+b^2+c^2\right)^2=100\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\Rightarrow a^4+b^4+c^4+50=100\)
\(\Rightarrow a^4+b^4+c^4=50\).
\(G=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{4}{a}+\frac{4}{b}\ge\frac{\left(2+2\right)^2}{a+b}=\frac{16}{4}=4\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=2\)
Vậy GTNN của \(G\)là \(4\) khi \(a=b=2\)
Chúc bạn học tốt ~
\(G=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{a}{b}+\frac{b}{a}+1=2+\left(\frac{a}{b}+\frac{b}{a}\right)\)
Ta có: \(a,b>0\)
Áp dụng BĐT Cauchy ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2.\sqrt{\frac{a}{b}.\frac{b}{a}}=2.1=2\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{b}{a}\Leftrightarrow a=b\)
\(\Rightarrow a=b=2\)
\(\Rightarrow G\ge2+2=4\)
\(G=4\Leftrightarrow a=b=2\)
Vậy \(G_{min}=4\Leftrightarrow a=b=2\)
Thấy thừa đk a+b=4
Đây là cách khác nhé.
a, a+ 4b chia hết 13 => 10 ( a+4b ) cũng chia hết cho 13
mà 10 (a + 4b) = 10a + 40b = 10a + b + 39b
mà 39b chia hết cho 13 => 10a + b chia hết cho 13.
b, ab - ba = 10a+b - (10b +a)= 9a - 9b = 9(a-b) = 3^2 ( a-b)
Để ab - ba là số chính phương thì a-b là số chính phương mà a;b là các chữ số nên a-b chỉ có thể = 1;4;9.
+ a-b = 1 ; ab nguyên tố=> ab =43
+ a - b = 4 => ab=70 thỏa mãn.
+ a - b = 9 => ab = 90 loại.
Vậy ab = 43 hoặc 73.
a, a+ 4b chia hết 13 => 10 ( a+4b ) cũng chia hết cho 13
mà 10 (a + 4b) = 10a + 40b = 10a + b + 39b mà 39b
chia hết cho 13 => 10a + b chia hết cho 13. b, ab - ba = 10a+b - (10b +a)= 9a - 9b = 9(a-b) = 3^2 ( a-b)
Để ab - ba là số chính phương thì a-b là số chính phương mà a;b là các chữ số nên a-b chỉ có thể = 1;4;9.
+ a-b = 1 ; ab nguyên tố=> ab =43
+ a - b = 4 => ab=70 thỏa mãn.
+ a - b = 9 => ab = 90 loại. Vậy ab = 43 hoặc 73.
Làm chữa lỗi phát:v Đến giờ mới nghĩ ra(thực ra là tình cờ xem lại ngày xưa:(
\(VT=\Sigma\frac{\sqrt{\left(a^2+b^2\right)2ab}}{a^2+b^2}\ge\Sigma\frac{2ab}{a^2+b^2}+3-3\)
\(=\Sigma\frac{\left(a+b\right)^2}{a^2+b^2}-3\ge\frac{\left[2\left(a+b+c\right)\right]^2}{2\left(a^2+b^2+c^2\right)}-3\)
\(=\frac{2\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)}-3=\frac{2\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2}-3\)
\(=\frac{4\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}-3=1\)(qed)
Đẳng thức xảy ra khi a = b = 1; c = 0 và các hoán vị (xét sơ sơ thôi chớ xét chi tiết em không biết làm đâu:v)
P.s: Chả biết có đúng hay không nữa:(( Lần này mà không đúng thì khổ.
a) \(A=x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)=\left(\frac{1}{2}\right)^3-3.\frac{1}{2}=-\frac{11}{8}\)
b) \(B=x^6+\frac{1}{x^6}=\left(x^3+\frac{1}{x^3}\right)^2-2=\frac{-11}{8}-2=-\frac{27}{8}\)
c) \(x^2+\frac{1}{x^2}=\left(x+\frac{1}{x}\right)^2-2=\left(\frac{1}{2}\right)^2-2=-\frac{7}{4}\)
\(x^5+y^5=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=\frac{-7}{4}.\frac{-11}{8}-\frac{1}{2}=1\frac{29}{32}\)
\(C=x^7+\frac{1}{x^7}=\left(x^6+\frac{1}{x^6}\right)\left(x+\frac{1}{x}\right)-\left(x^5+\frac{1}{x^5}\right)=\frac{-27}{8}.\frac{1}{2}-1\frac{29}{32}=-3\frac{19}{32}\)
b=0 vì nếu a.b=0 thì 1 trong 2 thừa số phải là 0.
=>Ta được số 40.
a là: 41-40=1
=>a=1.
Vậy ta được phép tính: 1+40=41.
~~~Chúc bạn giỏi nhé!~~~
Lê Anh Tuấn
a x b = 0
=> a = 0 hoặc b = 0
Nếu a = 0 => 4b = 41 => Vô lý
Nếu b = 0 => a + 4 x 0 = 41
a = 41
Vậy (a ; b) = (41 ; 0)