So sánh
230 + 320 +430 và 3x2410
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) $420-(71+420)$
$=420-71-420$
$=-71$
b) $(35-120)+(120+410-35)$
$=35-120+120+410-35$
$=(35-35)+(-120+120)+410$
$=410$
c) $(320-15+49)-(85-51)$
$=320-15+49-85+51$
$=320+(-15-85)+(49+51)$
$=320+(-100)+100$
$=320$
d) $-(312+59)-(41+400+88)$
$=-312-59-41-400-88$
$=(-312-88)+(-59-41)-400$
$=-400+(-100)-400$
$=-500-400$
$=-900$
e) $(430-731)-(-731+430-56)$
$=430-731+731-430+56$
$=(430-430)+(-731+731)+56$
$=56$
f) $(1352-47)-(53-1000+1352)$
$=1352-47-53+1000-1352$
$=(1352-1352)+(-47-53)+1000$
$=(-100)+1000$
$=1000-100$
$=900$
h) $(-42)-(370+58)-(120-370)$
$=-42-370-58-120+370$
$=(-42-58)+(-370+370)-120$
$=-100-120$
$=-220$
$Toru$
a,Tính tổng:S=1+52+54+...+5200
=>52S=52+54+56+...+5202
=>25S-S=24S=5202-1
=>S=\(\frac{5^{202}-1}{24}\)
b,So sánh 230+330+430 và 3.2410
3.24^10=3^11.4^15
4^30=4^15.4^15
hiển nhiên 4^15>3^11
=>3.24^10<<4^30<<<2^30+3^20+4^30
Ta có: 230+330+430>230+230+430=231+230.230
=231(1+229) (1)
Lại có:3.24^10=3^11.2^30 (2)
So sánh (1)và (2): Vì 3^11<4^11=2^22<2^29
và 2^30<2^31
=> 3^11.2^30 <(1+2^29)2^31<2^30+3^30+4^30
a) \(3\cdot24^{10}=3\cdot6^{10}\cdot4^{10}=3\cdot3^{10}\cdot2^{10}\cdot2^{20}\)
\(=3^{11}\cdot2^{30}\)
\(4^{30}=2^{30}\cdot2^{30}=2^{30}\cdot4^{15}\)
Ta có \(4^{15}>3^{15}>3^{11}\) nên \(4^{15}>3^{11}\)
Khi đó \(4^{15}\cdot2^{30}>3^{11}\cdot2^{30}\) hay \(4^{30}>3\cdot24^{10}\)
b) \(\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{19}{9^2\cdot10^2}\)
\(=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+...+\dfrac{19}{81\cdot100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)
Vậy dãy trên nhỏ hơn 1
a/
\(4^{30}=\left(2^2\right)^{30}=2^{60}=2^{30}.2^{30}=\left(2^2\right)^{15}.2^{30}=4^{15}.2^{30}\)
\(3.24^{10}=3.3^{10}.\left(2^3\right)^{10}=3^{11}.2^{30}< 3^{15}.2^{30}\)
\(\Rightarrow4^{30}=4^{15}.2^{30}>3^{15}.2^{30}>3^{11}.2^{30}=3.24^{10}\)
b/
\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}=\)
\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}=\)
\(=1-\dfrac{1}{10^2}< 1\)
b, đề phải là A = 3^450 chứ bạn ơi
Có : A = 3^450 = (3^3)^150 = 27^150
B = 5^300 = (5^2)^150 = 25^150
Vì 27^150 > 25^150 => 3^450 > 5^300
Tk mk nha
a, Có : 2A = 2+2^2+.....+2^10
A = 2A-A = (2+2^2+.....+2^10)-(1+2+2^2+.....+2^9) = 2^10-1
=> A < B
a ) 3 20 > 27 4 b ) 5 34 > 25 . 5 30 c ) 2 25 > 16 6 d ) 10 30 < 4 50
2480 = ( 23 )180 = 8180
3320 = ( 32 ) 180 = 9180
Do 8180 < 9180 nên 2480 < 3320
2480=(23)160=8160
3320=(32)160=9160
vì 8<9=>8160<3160 hay 2480<3320
Ta có :
\(3.24^{20}=3^{11}.4^{15}\)
\(\Rightarrow\)\(4^{30}=4^{15}.4^{15}\)
\(\Rightarrow\)\(4^{15}>3^{11}\) ( vì phân nguyên bé và mũ cũng bé )
\(\Rightarrow\)....................................