tính giá trị các lũy thừa sau
\(4^8.2^{20}\) \(9^{12}.27^5.81^4\) \(25^{20}.125^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) 4⁸.2²⁰ = (2²)⁸.2²⁰
= 2¹⁶.2²⁰ = 2³⁶
-----------
9¹².27⁵.81³ = (3²)¹².(3³)⁵.(3⁴)⁴
= 3²⁴.3¹⁵.3¹⁶ = 3⁵⁵
--------
64³.4⁵.16² = (4³)³.4⁵.(4²)²
= 4⁹.4⁵.4⁴ = 4¹⁸
b) 25²⁰.125⁴ = (5²)²⁰.(5³)⁴
= 5⁴⁰.5¹² = 5⁵²
--------
x⁷.x³.x⁴ = x¹⁴
--------
3⁶.4⁶ = (3.4)⁶ = 12⁶
2) a) 2² = 4
2³ = 8
2⁴ = 16
2⁵ = 32
2⁶ = 64
2⁷ = 128
2⁸ = 256
2⁹ = 512
2¹⁰ = 1024
b) 3² = 9
3³ = 27
3⁴ = 81
3⁵ = 243
c) 4² = 16
4³ = 64
4⁴ = 256
d) 5² = 25
5³ = 125
5⁴ = 625
Bạn ấy lm câu a rùi mik lm 3 câu còn lại nha
\(27^{16}:9^{10}\)
\(=3^{16}\cdot9^{16}:9^{10}\)
\(=9^8\cdot9^6=9^{14}\)
\(125^3:25^4\)
\(=5^3\cdot25^3:25^4\)
\(=5\cdot25\cdot25^3:25^4\)
\(=5\cdot25^4:25^4\)
\(=5\cdot1=5\)
\(24^4:3^4-32^{12}:16^{12}\)
\(=8^4\cdot3^4:3^4-2^{12}\cdot16^{12}:16^{12}\)
\(=8^4-2^{12}\)
\(=4096-4096\)
\(=0\)
a,�,
220.15+210.85220.15+210.85
=220.210.85+15=220.210.85+15
=230.100=230.100
=230.102=230.102
b,�,
2716:9102716:910
=(33)16:(32)10=(33)16:(32)10
=348:320=348:320
=328=328
c,�,
1253:2541253:254
=(53)5:(52)4=(53)5:(52)4
=515:58=515:58
=57=57
d,�,
244:34−3212:1612244:34−3212:1612
=(24:3)4−(32:16)12=(24:3)4−(32:16)12
=84−212=84−212
=(23)4−212=(23)4−212
=212−212=212−212
1: 8=2^3
2: 25=5^2
3: 4=2^2
4: 49=7^2
5: 81=9^2
6: 36=6^2
7: 100=10^2
8: 121=11^2
9: 144=12^2
10: 169=13^2
11: 27=3^3
12: 125=5^3
13: 1000=10^3
14: 32=2^5
15: 243=3^5
16: 343=7^3
17: 216=6^3
18: 64=4^3
19: 225=15^2
20: 128=2^7
a) $125^3:25^4=(5^3)^3:(5^2)^4=5^9:5^8=5^1$
$16^4:4^2=(4^2)^4:4^2=4^8:4^2=4^6$
$27^8:9^4=(3^3)^8:(3^2)^4=3^{24}:3^8=3^{16}$
$125^5:25^3=(5^3)^5:(5^2)^3=5^{15}:5^6=5^9$
$4^{14}:5^{28}=(2^2)^{14}:5^{28}=2^{28}:5^{28}=(\dfrac{2}{5})^{28}$
b) $12^n:2^{2n}=12^n:(2^2)^n=12^n:4^n=3^n$
$64^4.16^5.4^{20}=(4^3)^4.(4^2)^5.4^{20}=4^{12}.4^{10}.4^{20}=4^{42}$
a) \(125^7:25^4=\left(5^3\right)^7:\left(5^2\right)^4=5^{21}:5^8=5^{13}\)
b) \(27^8:9^5=\left(3^3\right)^8:\left(3^2\right)^5=3^{24}:3^{10}=3^{14}\)
c) \(4^{20}:2^{30}=\left(2^2\right)^{20}:2^{30}=2^{40}:2^{30}=2^{10}\)
d) \(28^n:2^n=28^n:4^n=7^n\)
e) \(64^5.16^6:4^{20}=2^{30}.2^{24}:2^{10}=2^{54}:2^{40}=2^{14}\)
f) \(32^4:8^6=2^{20}:2^{18}=2^2\)
\(a.125^7:25^4=5^{21}:5^8=5^{13}\)
\(b.27^8:9^5=3^{24}:3^{10}=3^{14}\)
\(c.4^{20}:2^{30}=2^{40}:2^{30}=2^{10}\)
\(d.28^n:2^{2n}=28^n:4^n=7n\)
\(\hept{\begin{cases}e.64^5.16^6:4^{20}=4^{15}.4^{12}:4^{20}=4^7\\f.32^4:8^6=2^{20}:2^{18}=2^2\end{cases}}\)
\(a,125^5:25^3=\left(5^3\right)^5:\left(5^2\right)^3=5^{15-6}=5^9\)
\(b,27^6:9^3=\left(3^3\right)^6:\left(3^2\right)^3=3^{18-6}=3^{12}\)
\(c,4^{20}:2^{15}=\left(2^2\right)^{20}:2^{15}=2^{40-15}=2^{25}\)
\(d,24^n:2^{2n}=4^n.6^n:4^n=6^n\)
\(e,64^4.16^5:4^{20}=\left(2^6\right)^4.\left(2^4\right)^5:\left(2^2\right)^{20}=2^{24+20-40}=2^4=16\)
\(\frac{8^{11}.3^{17}}{27^{10}.9^{15}}=\frac{8^{11}.3^{17}}{3^{30}.3^{30}}=\frac{8^{11}}{3^{13}.3^{30}}=\frac{8^{11}}{3^{43}}\)
\(\frac{\left(5^4-5^3\right)^3}{125^4}=\frac{[\left(5-1\right).5^3]^3}{5^{12}}=\frac{\left(4.5^3\right)^3}{5^{12}}=\frac{64.5^9}{5^{12}}=\frac{64}{5^3}=\left(\frac{4}{5}\right)^3\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\frac{2^{40}-2^{20}+6^{20}}{6^{20}-3^{20}+3^{40}}=\frac{2^{20}.\left(2^{20}-1+3^{30}\right)}{3^{20}.\left(2^{20}-2+3^{20}\right)}=\frac{2^{20}}{3^{20}}=\left(\frac{2}{3}\right)^{20}\)
\(4^8.2^{20}.9^{12}.27^5.81^4.25^{20}.125^4\)
\(=\left(2^2\right)^8.2^{20}.\left(3^2\right)^{12}.\left(3^3\right)^5.\left(3^4\right)^4.\left(5^2\right)^{20}.\left(5^3\right)^4\)
\(=2^{16}.2^{20}.3^{15}.3^{16}.5^{40}.5^{12}\)
\(=2^{16+20}.3^{15+16}.5^{40+12}\)
\(=2^{36}.3^{31}.5^{52}\)