K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

\(A=\frac{a^2+3ab+b^2}{\sqrt{ab}\left(a+b\right)}=\frac{\left(a^2+2ab+b^2\right)+ab}{\sqrt{ab}\left(a+b\right)}=\frac{\left(a+b\right)^2+ab}{\sqrt{ab}\left(a+b\right)}\)

\(=\frac{\left(a+b\right)^2}{\sqrt{ab}\left(a+b\right)}+\frac{ab}{\sqrt{ab}\left(a+b\right)}=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)

Áp dụng bđt AM - GM ta có : \(A\ge2\sqrt{\frac{a+b}{\sqrt{ab}}.\frac{\sqrt{ab}}{a+b}}=2\)

Dấu "=" xảy ra \(\Leftrightarrow a+b=\sqrt{ab}\)

làm tiếp đoạn của Đinh Đức Hùng

\(\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}=\frac{a+b}{\sqrt{ab}}+\frac{4\sqrt{ab}}{a+b}-\frac{3\sqrt{ab}}{a+b}\ge4-\frac{\frac{3}{2}\left(a+b\right)}{a+b}=4-\frac{3}{2}=\frac{5}{2}\)

AH
Akai Haruma
Giáo viên
12 tháng 6 2023

Biểu thức P đâu bạn?

18 tháng 6 2023

đây ạ

13 tháng 7 2018

Đặt \(\frac{a+b}{\sqrt{ab}}=t\ge2\)

Thế vào :\(A\ge\frac{\sqrt{ab}}{a+b}+\frac{16.\frac{\left(a+b\right)^2}{2}}{ab}=\frac{\sqrt{ab}}{a+b}+\frac{8\left(a+b\right)^2}{ab}=\frac{1}{t}+8t^2\)

\(=\frac{1}{2t}+\frac{1}{2t}+\frac{1}{16}t^2+\frac{127t^2}{16}\)

\(\ge\sqrt[3]{\frac{1}{2t}.\frac{1}{2t}.\frac{t^2}{16}}+\frac{127t^2}{16}=3\sqrt[3]{\frac{1}{4}.\frac{1}{16}}+\frac{127t^2}{16}\ge\frac{3}{4}+\frac{127.2^2}{16}=\frac{3}{4}+\frac{127}{4}=\frac{130}{4}=\frac{65}{2}\)

Vậy min A=\(\frac{65}{2}\) đạt được khi \(t=2\Rightarrow\frac{a+b}{\sqrt{ab}}=2\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=0\Rightarrow a=b\)

16 tháng 7 2018

sorry,hàng thứ 4 biểu thức đầu tiên  là \(3\sqrt[3]{\frac{1}{2t}.\frac{1}{2t}.\frac{t^2}{16}}\) nha

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

11 tháng 8 2016

Đặt \(x=\frac{a}{b}+\frac{b}{a}\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=x^2-2\)

Xét mẫu thức : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)=x^2-x-2=\left(x+1\right)\left(x-2\right)\)

Thay \(x=\frac{a}{b}+\frac{b}{a}\) được mẫu thức : \(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)=\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}\)

Ta có : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{a^2b^2}}{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}}\)

\(=\frac{\left(a-b\right)^2}{a^2b^2}.\frac{ab}{\left(a-b\right)^2}=\frac{1}{ab}\) (đpcm)

b) Áp dụng bđt Cauchy : 

\(1=4a+b+\sqrt{ab}\ge2\sqrt{4a.b}+\sqrt{ab}\)

\(\Rightarrow5\sqrt{ab}\le1\Rightarrow ab\le\frac{1}{25}\)

\(\Rightarrow P=\frac{1}{ab}\ge25\) . Dấu "=" xảy ra khi \(\begin{cases}4a+b+\sqrt{ab}=1\\4a=b\end{cases}\)

\(\Leftrightarrow\begin{cases}a=\frac{1}{10}\\b=\frac{2}{5}\end{cases}\) 

Vậy P đạt giá trị nhỏ nhất bằng 25 tại \(\left(a;b\right)=\left(\frac{1}{10};\frac{2}{5}\right)\)

 

11 tháng 8 2016

pn ơi , bđt cauchy : \(a+b\ge2\sqrt{ab}\)

s lại là \(2\sqrt{4a.b}+\sqrt{ab}\)

25 tháng 9 2019

Ta có: \(P=\Sigma\frac{\left(\frac{1}{c^2}\right)}{\left(\frac{1}{a}+\frac{1}{b}\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{2}\ge\frac{\left(\frac{9}{a+b+c}\right)}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a =b =c = 1.

True?

18 tháng 4 2020

Ta có : 

\(P=\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)

\(\Rightarrow P=\frac{\left(\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}}+\frac{\left(\frac{1}{b}\right)^2}{\frac{1}{c}+\frac{1}{a}}+\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{c}+\frac{1}{b}}\)

\(\Rightarrow P\ge\frac{\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}}\)

\(\Rightarrow P\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{1}{2}.\frac{9}{a+b+c}\)

\(\Rightarrow P\ge\frac{3}{2}\)

Dấu = xảy ra khi  a=b=c=1 

9 tháng 4 2018

a, Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)

Ta có: \(A=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

b, Áp dụng \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x,y,z>0\)

Ta có: \(B=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2\ge\frac{\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{\left(3+\frac{9}{a+b+c}\right)^2}{3}\ge\frac{\left(3+6\right)^2}{3}=27\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

* Các BĐT phụ bạn tự CM nha! Chúc bạn học tốt

10 tháng 4 2018

Camon bạn!!! Nhưng bạn đọc sai đề r !! ^.^