K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Ta có:

A = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16 + 1/17) <

(1/2 + 1/3 + 1/4 + 1/5) + 3(1/6) + 3(1/9) + 3(1/12) + 3(1/15)

= 2(1/2 + 1/3 + 1/4 + 1/5)

< 2(1/2 + 1/2 + 1/4 + 1/4) = 3

Mặt khác A = (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) + 1/17

> (1/2 + 1/3 + 1/4) + 4(1/8) + 4(1/12) + 4(1/16)

=2(1/2 + 1/3 + 1/4) > 2(1/2 + 1/4 + 1/4) = 2

=> 2 < A < 3 

=> ko la số tự nhiên

14 tháng 9 2017

bài trên mk giải rùi đó 2<a<3 nên ko chẵn

3 tháng 5 2015

Mẫu chung của các phân số là: 24.32.5.7.11.13

Sau khi quy đồng, riêng phân số \(\frac{1}{16}\)có thừa số phụ lẻ => Tử của phân số \(\frac{1}{16}\)sau khi quy đồng có tử lẻ.

Các phân số còn lại có tử chẵn.

=> C sau khi quy đồng có tử lẻ mẫu chẵn

=> Tử không chia hết c ho mẫu

=> C \(\notin\)N

 

16 tháng 10 2016

tham khảo ở đây Bài 1360. A=1/2+1/3+1/4+...+1/15+1/16.Chứng tỏ rằng A không phải làsố tự nhiên. - GIÁO DỤC TIỂU HỌC - Blog Nguyễn Xuân Trường

16 tháng 10 2016

Ta có: \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1\);                    (1)

\(\frac{1}{8}\times4< \frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}< \frac{1}{4}\times4\)

\(\frac{1}{2}< \frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}< 1\);                (2)

\(\frac{1}{16}\times8< \frac{1}{9}+\frac{1}{10}+\frac{1}{11}+....+\frac{1}{16}< \frac{1}{8}\times8\)

\(\frac{1}{2}< \frac{1}{9}+\frac{1}{10}+\frac{1}{11}+....\frac{1}{16}< 1\)       (3)

Từ vế (1), (2) và (3) ta có:

\(1+\frac{1}{2}+\frac{1}{2}< A< 1+1+1\)

\(2< A< 3\)

Vậy A không phải là số tự nhiên.

 

10 tháng 8 2016

Ta có

\(A=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}\right)\)

Vì \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}< \frac{1}{6}.3=\frac{1}{2}\)

    \(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}< \frac{1}{9}.3=\frac{1}{3}\)

   \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}< \frac{1}{12}.3=\frac{1}{4}\)

   \(\frac{1}{15}+\frac{1}{16}< \frac{1}{10}.2=\frac{1}{5}\)

=> \(S< 2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)< 2\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=3\)

=> S<3 (1) 

Lập luận tương tự ta có

\(S>2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)>2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=2\)

=> S>2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.