chứng minh rằng \(\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{2006^2}+\frac{1}{2007^2}}\) là số hửux tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a , b , c là số hữu tỉ t/m a = b + c ta luôn có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)
Thật vậy : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)}\)
\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-\frac{2.abc\left(a-b-c\right)}{a^2b^2c^2}}\)(quy đồng lên )
\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\left(\text{do a-b-c=0}\right)\)
\(=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)
Áp dụng ta được \(A=\left|\frac{1}{3}-\frac{1}{2}-1\right|+\left|\frac{1}{4}-\frac{1}{3}-1\right|+...+\left|\frac{1}{2000}-\frac{1}{1999}-1\right|\)là số hữu tỉ
Vậy A là số hữu tỉ
Xét : \(\left(\frac{1}{k-1}-\frac{1}{k}+1\right)^2=\frac{1}{k^2}+\frac{1}{\left(k-1\right)^2}+1+2\left(-\frac{1}{k\left(k-1\right)}-\frac{1}{k}+\frac{1}{k-1}\right)\)
\(=\frac{1}{k^2}+\frac{1}{\left(k-1\right)^2}+1\)
\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=\left|\frac{1}{k-1}-\frac{1}{k}+1\right|\)với k thuộc N* , k > 1
Áp dụng : \(\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{1999^2}+\frac{1}{2000^2}}\)
\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{1999}-\frac{1}{2000}\right)\)
\(=1998+\frac{1}{2}+-\frac{1}{2000}\)
xét dạng tổng quát đi bạn ; bạn tham khảo mấy câu hỏi tương tự ý bạn
Ap dung \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Ta co \(P< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2007}}-\frac{1}{\sqrt{2008}}\right)\)
=> \(P< 2\left(1-\frac{1}{\sqrt{2008}}\right)< 2.1=2\)
Suy ra P khong phai so nguyen to
Ta có:
\(\frac{1}{n\sqrt{\left(n+1\right)}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{\left(n+1\right)}\right)}\)
\(=\frac{1}{\sqrt{n\left(n+1\right)}}.\left(\sqrt{n+1}-\sqrt{n}\right)=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vào ta được
\(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{99\sqrt{100}+100\sqrt{99}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=1-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Lời giải:
Xét số hạng tổng quát $\frac{1}{(n+1)\sqrt{n}}$
Ta có:
$\frac{1}{(n+1)\sqrt{n}}=\frac{2}{2(n+1)\sqrt{n}}=\frac{2}{(n+1)\sqrt{n}+(n+1)\sqrt{n}}$
$< \frac{2}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{2(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{2(\sqrt{n+1}-\sqrt{n})}{\sqrt{n(n+1)}}=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}$
Do đó:
$P< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+....+\frac{2}{\sqrt{2007}}-\frac{2}{\sqrt{2008}}=2-\frac{2}{\sqrt{2008}}< 2$
Do đó $P$ không thể là số nguyên tố.
\(=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2006}-\frac{1}{2007}\)
\(=2007-\frac{1}{2007}=\frac{4028048}{2007}\)
ta sẽ chứng minh với \(a\in Q\) thì \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\) là số hữ tỉ
ta có \(M=\frac{1}{1}+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{1}{1}+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}+\frac{2}{a}-\frac{2}{a+1}-\frac{2}{a\left(a+1\right)}-\frac{2}{a}+\frac{2}{a+1}+\frac{2}{a\left(a+1\right)}\)
\(=\left(\frac{1}{1}+\frac{1}{a}-\frac{1}{a+1}\right)^2+2\left(\frac{1}{a}+\frac{1}{a\left(a+1\right)}-\frac{1}{a+1}\right)\)
\(=\left(1+\frac{1}{a}+\frac{1}{a+1}\right)^2+2\left(\frac{1+a-\left(a+1\right)}{a\left(a+1\right).1}\right)=\left(1+\frac{1}{a}+\frac{1}{a+1}\right)^2\)
=> \(\sqrt{M}=\left|1+\frac{1}{a}+\frac{1}{a+1}\right|\) là số hữu tỉ
=> A lá số hữ tỉ
Áp dụng thì ta có mỗi phân thức là số hữ tỉ nên tổng của nó là sô hưux tỉ