Cho tam giác ABC vuông tại A, có AH là đường cao. Biết AB = 8 cm, HC - HB = 8 cm. Tính HB, HC, AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB=căn 4,5*12,5=7,5cm
AC=căn 8*12,5=10cm
b: HB=(13+5)/2=9cm
HC=13-9=4cm
AB=căn 9*13=3 căn 13cm
AC=căn 4*13=2căn 13cm
Vẽ hơi xấu , thông cảm nha !
Bài này bạn áp dụng Pytago và Hệ thức lượng ( ở lớp 9 ) !
Áp dụng Py-ta-go ta có : AC2=AH2+HC2= 82+82 = 128 => AC = \(\sqrt{128}\)= \(8\sqrt{2}\)
Rồi bạn áp dụng hệ thức lượng ta tính BC = AC2- HC . ( tính được BC rồi => HB )
tiếp tục tính AB 2 = BC2 - AC2 . Bạn thay số vào là tính được ngay , bài này khá đơn giản với HS lớp 9 ! . CHúc bạn thành công !
b) ΔAHB vuông tại H
Áp dụng định lý Pi-ta-go ta có: AH2+ BH2= AB2
⇒ 42 + 22 = AB2
⇒AB2 = 20
⇒AB = √20
ΔAHC vuông tại H
Áp dụng định lý Pi-ta-go, ta có: AH2 + HC2 = AC2
⇒42 +82 = AC2
⇒ AC2 = 80
⇒AC = √80
b)Vì AB>AC(√20>√80)
⇒góc C lớn hơn góc B (quan hệ giữa góc và cạnh đối diện)
TK:
Ta có tam giác vuông ABC với đường cao AH.
Theo định nghĩa, đường cao AH là đoạn thẳng vuông góc với cạnh đối diện và đi qua đỉnh của tam giác.
Vì tam giác ABC vuông tại A, nên AH là đường cao của tam giác.
Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:
\(AB^2+AC^2=BC^2\)
\(4^2+7,5^2=BC^2\)
\(16+56,25=BC^2\)
\(72,25=BC^2\)
\(BC\approx8,5cm\)
Vì AH là đường cao của tam giác ABC, nên AH chia BC thành hai đoạn HB và HC.
\(HB=BC\times\left(\dfrac{AB}{AC}\right)\)
\(HB=8,5\times\left(\dfrac{4}{7,5}\right)\)
\(HB\approx4,53cm\)
\(HC=BC-HB\)
\(HC=8,5-4,53\)
\(HC\approx3,97cm\)
Vậy \(HB\approx4,53cm\) và \(HC\approx3,97cm\)
a: Xet ΔABC vuông tại A co AH là đường cao
nên AH^2=HB*HC
b: BC=3,6+6,4=10cm
\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)
=>AC=8cm
Xét tam giác ABH vuông tại H có:
\(AB^2=BH^2+AH^2\left(Pytago\right)\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2^2}=\sqrt{5}\left(cm\right)\)
Áp dụng HTL trong tam giác ABC vg tại A có đg cao AH:
\(AH^2=BH.HC\)
\(\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{\sqrt{5}}=\dfrac{4\sqrt{5}}{5}\left(cm\right)\)
Ta có: \(AC^2=HC^2+AH^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt[]{2^2+\left(\dfrac{4\sqrt{5}}{5}\right)^2}=\dfrac{6\sqrt{5}}{5}\left(cm\right)\)
Ta có: \(BC=HC+BH=\sqrt{5}+\dfrac{4\sqrt{5}}{5}=\dfrac{5+4\sqrt{5}}{5}\left(cm\right)\)