K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2023

a) Để hàm số đã cho là hàm số bậc nhất thì:

3m + 5 ≠ 0

⇔ 3m ≠ -5

⇔ m ≠ -5/3

b) Để hàm số đã cho là hàm số bậc nhất thì:

2m² + 3 ≠ 0

⇔2m² ≠ -3 (luôn đúng)

Vậy m ∈ R

c) Để hàm số đã cho là hàm số bậc nhất thì:

m² - 3m = 0 và 3 - m ≠ 0

*) m² - 3m = 0

⇔ m(m - 3) = 0

⇔ m = 0 hoặc m - 3 = 0

**) m - 3 = 0

⇔ m = 3

*) 3 - m ≠ 0

⇔ m ≠ 3

Vậy m = 0 thì hàm số đã cho là hàm số bậc nhất

a: Để đây là hàm số bậc nhất thì 3m+5<>0

=>3m<>-5

=>\(m< >-\dfrac{5}{3}\)

b: Để đây là hàm số bậc nhất thì \(2m^2+3\ne0\)

mà \(2m^2+3>=3>0\forall m\)

nên \(m\in R\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-3m=0\\3-m< >0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-3\right)=0\\m< >3\end{matrix}\right.\Leftrightarrow m=0\)

20 tháng 4 2017

Hàm số   y   =   ( m 2   –   9 m   +   8 )   x   +   10 là hàm số bậc nhất khi  m 2   –   9 m   +   8   ≠   0

  ( m   –   1 )   ( m   –   8 ) ≠   0     ⇔ m − 1 ≠ 0 m − 8 ≠ 0 ⇔ m ≠ 1 m ≠ 8

Đáp án cần chọn là: A

22 tháng 6 2018

Nếu hàm số đạt cực đại tại x = 1 thì y’(1) = 0. Khi đó:

y′(1) = –3 m 2  – 3m + 6 = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, y” = –6( m 2  + 5m)x + 12m

    +) Với m = 1 thì y’’ = -36x + 12. Khi đó, y’’(1) = -24 < 0 , hàm số đạt cực đại tại x = 1.

    +) Với m = -2 thì y’’ = 36x – 24. Khi đó, y’’(1) = 12 > 0, hàm số đạt cực tiểu tại x = 1.

Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.

NV
17 tháng 8 2021

Hàm là bậc nhất khi:

a. \(3m-2\ne0\Rightarrow m\ne\dfrac{2}{3}\)

b. \(3-m>0\Rightarrow m< 3\)

c. \(\left\{{}\begin{matrix}2m-1\ne0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m\ne-2\end{matrix}\right.\)

d. \(\left\{{}\begin{matrix}m^2-4=0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)

a: ĐKXĐ: \(m\ne\dfrac{2}{3}\)

b: ĐKXĐ: \(m< 3\)

c: ĐKXĐ: \(\left[{}\begin{matrix}m\ge\dfrac{1}{2}\\m< -2\end{matrix}\right.\)

d: ĐKXĐ: \(m=2\)

a: ĐKXĐ: m<>1

b: ĐKXĐ: \(m^2-2m-3-m-1< >0\)

=>(m-4)(m+1)<>0

hay \(m\notin\left\{4;-1\right\}\)

13 tháng 12 2017

a) y = –( m 2  + 5m) x 3  + 6m x 2  + 6x – 5

y′ = –3( m 2  + 5m) x 2  + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +) m2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với  m 2  + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

Δ' = 36 m 2  + 18( m 2  + 5m) ≤ 0 ⇔ 3 m 2  + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0

– Với điều kiện đó, ta có –3( m 2  + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.

b) Nếu hàm số đạt cực đại tại x = 1 thì y’(1) = 0. Khi đó:

y′(1) = –3 m 2  – 3m + 6 = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, y” = –6( m 2  + 5m)x + 12m

    +) Với m = 1 thì y’’ = -36x + 12. Khi đó, y’’(1) = -24 < 0 , hàm số đạt cực đại tại x = 1.

    +) Với m = -2 thì y’’ = 36x – 24. Khi đó, y’’(1) = 12 > 0, hàm số đạt cực tiểu tại x = 1.

 

Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.

21 tháng 5 2019

11 tháng 8 2018

Chọn B.

18 tháng 2 2021

câu a và b thay số vào là ra nhé, bài mik hơi khác:

Ta có m^2 + 2m + 3 = m^2 + 2m + 1 + 2 = (m + 1)^2 + 2 > 0 với mọi m.

 Suy ra hàm số đã cho đồng biến với mọi m với x > 0 và nghịch biến với x < 0

a) Vì \(m^2+2m+5>0\forall m\) nên để hàm số \(y=\left(m^2+2m+5\right)x^2\) đồng biến thì x>0

b) Vì \(m^2+2m+5>0\forall m\) nên để hàm số \(y=\left(m^2+2m+5\right)x^2\) nghịch biến thì x<0

c) Thay x=1 và y=8 vào hàm số \(y=\left(m^2+2m+5\right)x^2\), ta được:

\(m^2+2m+5=8\)

\(\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow m^2+3m-m-3=0\)

\(\Leftrightarrow m\left(m+3\right)-\left(m+3\right)=0\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+3=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)