K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) =>\(a=bk\); \(c=dk\)

Thay \(a=bk\);\(c=dk\)vào biểu thức \(\frac{ac}{bd}\)ta được:

\(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{k^2bd}{bd}=k^2\left(1\right)\)

Thay \(a=bk\); \(c=dk\)vào biểu thức \(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}=\frac{2015\left(bk\right)^2+2016\left(dk\right)^2}{2015b^2+2016d^2}=\frac{2015b^2k^2+2016d^2k^2}{2015b^2+2016d^2}=\frac{k^2\left(2015b^2+2016d^2\right)}{2015b^2+2016d^2}=k^2\left(2\right)\)

Từ (1)(2)

=>\(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)

18 tháng 10 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

a) Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3\) (1)

\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)

b) Ta có:

\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}=\frac{2015.\left(bk\right)^2+2016.\left(dk\right)^2}{2015b^2+2016d^2}=\frac{2015.b^2.k^2+2016.d^2.k^2}{2015.b^2+2016.d^2}=\frac{k^2.\left(2015.b^2+2016d^2\right)}{2015b^2+2016d^2}=k^2\left(2\right)\) Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)

 

 

20 tháng 10 2019

Đề bài phải thêm là \(\frac{a}{b}=\frac{c}{d}\) nhé.

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{2015a}{2015c}=\frac{2016b}{2016d}.\)

\(\Rightarrow\frac{2016a}{2016c}=\frac{2017b}{2017d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{2015a}{2015c}=\frac{2016b}{2016d}=\frac{2015a-2016b}{2015c-2016d}\) (1)

\(\frac{a}{c}=\frac{2016a}{2016c}=\frac{2017b}{2017d}=\frac{2016a+2017b}{2016c+2017d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}.\)

\(\Rightarrow\frac{2015a-2016b}{2016c+2017b}=\frac{2015c-2016d}{2016c+2017d}\left(đpcm\right).\)

Câu a) mình nghĩ phải chứng minh như thế.

Chúc bạn học tốt!


20 tháng 10 2019

mk vt thiếu \(\frac{a}{b}=\frac{c}{d}\)

5 tháng 9 2015

tỉ lệ thức cần chứng minh <=> chứng minh: \(\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}\)

Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\) = \(\frac{2015a}{2015c}=\frac{2016b}{2016d}=\frac{2016a}{2016c}=\frac{2017b}{2017d}\)

Áp dụng t/c của dãy tỉ số bằng nhau ta có: 

\(\frac{a}{c}=\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}\) => đpcm

AH
Akai Haruma
Giáo viên
18 tháng 8

Lời giải:

$\frac{A}{B}=\frac{1}{2}\Rightarrow B=2A$

Khi đó:

$\frac{2015A+1}{2015B+2}=\frac{2015A+1}{2015.2A+2}$

$=\frac{2015A+1}{2(2015A+1)}=\frac{1}{2}=\frac{A}{B}$

Vậy ta có đpcm.

5 tháng 12 2015

Ta co : \(\frac{a}{2014}=\frac{b}{3}=\frac{c}{2}\Rightarrow\frac{a}{2014}=\frac{2015b}{6045}=\frac{2016c}{4032}\) va 2015b-2016b-a=-1

Ap dung tinh chat day ti so bang nhau : 

\(\frac{2015b}{6045}=\frac{2016c}{4032}=\frac{a}{2014}=\frac{2015b-2016b-a}{6045-4032-2014}=-\frac{1}{-1}=1\)

Suy ra : \(\frac{2015b}{6045}=1\Rightarrow b=1.6045:2015=3\)

\(\frac{2016c}{4032}=1\Rightarrow c=1.4032:2016=2\)

\(\frac{a}{2014}=1\Rightarrow a=1.2014=2014\)

**** nhe