K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F có

\(\widehat{DBA}\) chung

Do đó: ΔBDA~ΔBFC

=>\(\dfrac{BD}{BF}=\dfrac{BA}{BC}\)

=>\(\dfrac{BD}{BA}=\dfrac{BF}{BC}\)

Xét ΔBDF và ΔBAC có

\(\dfrac{BD}{BA}=\dfrac{BF}{BC}\)

\(\widehat{DBF}\) chung

Do đó: ΔBDF~ΔBAC

Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

\(\widehat{DCA}\) chung

Do đó: ΔCDA~ΔCEB

=>\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)

=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)

Xét ΔCDE và ΔCAB có

\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)

\(\widehat{DCE}\) chung

Do đó: ΔCDE~ΔCAB

b: \(BF\cdot BA+CE\cdot CA\)

\(=BD\cdot BC+CD\cdot CB\)

\(=BC\left(BD+CD\right)=BC^2\)

4 tháng 1

Em nghĩ ,là chị xuống lớp 7 hc lại đi là vừa

1: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có

\(\widehat{DBA}\) chung

Do đó: ΔBFC\(\sim\)ΔBDA

Suy ra: BF/BD=BC/BA

hay \(BF\cdot BA=BD\cdot BC\)

2: Ta có: BF/BD=BC/BA

nên BF/BC=BD/BA

Xét ΔBDF và ΔBAC có 

BF/BC=BD/BA

\(\widehat{DBF}\) chung

Do đó: ΔBDF\(\sim\)ΔBAC
SUy ra: \(\widehat{BDF}=\widehat{BAC}\)

3: Xét tứ giác ABDE có 

\(\widehat{ADB}=\widehat{AEB}=90^0\)

Do đó: ABDE là tứ giác nội tiếp

Suy ra: \(\widehat{BAC}+\widehat{BDE}=180^0\)

mà \(\widehat{CDE}+\widehat{BDE}=180^0\)

nên \(\widehat{CDE}=\widehat{BAC}\)

3 tháng 6 2023

Em tự vẽ hình nhé!

a. Đề sai vì tam giác BDH là tam giác vuông còn BDF là tam giác thường.

b. Xét tam giác BHF và tam giác CHE có:

\(\widehat{BFH}=\widehat{CEH}=90^o\left(gt\right)\)

\(\widehat{FHB}=\widehat{EHC}\) (đối đỉnh)

Do đó tam giác BHF đồng dạng tam giác CHE (g.g)

c. Xét tam giác AHE và tam giác BHD có:

\(\widehat{E}=\widehat{D}=90^o\)

\(\widehat{AHE}=\widehat{BHD}\) (đối đỉnh)

Do đó tam giác AHE đồng dạng tam giác BHD (g.g)

\(\Rightarrow\dfrac{HA}{HB}=\dfrac{HE}{HD}\Leftrightarrow HA.HD=HE.HB\) (1)

Tương tự có tam giác AFH đồng dạng tam giác CDH (g.g)

\(\Rightarrow\dfrac{HA}{HC}=\dfrac{HF}{HD}\Leftrightarrow HA.HD=HC.HF\left(2\right)\)

Từ (1), (2) có: \(HA.HD=HB.HE=HC.HF\)

NM
26 tháng 2 2021

A B C D E F H K

a. ta có \(\hept{\begin{cases}\widehat{ADB}=\widehat{CFB}=90^0\\\widehat{ABD}=\widehat{CBF}\end{cases}\Rightarrow\Delta ABD~\Delta CBF\left(g.g\right)}\)

b.Ta có \(\hept{\begin{cases}\widehat{AFH}=\widehat{CDH}=90^0\\\widehat{AHF}=\widehat{CHD}\text{ (đối đỉnh)}\end{cases}\Rightarrow\Delta AHF~\Delta CHD\left(g.g\right)}\)\(\Rightarrow\frac{AH}{HF}=\frac{CH}{HD}\Rightarrow AH.HD=CH.HF\)

c. từ câu a ta có \(\frac{BD}{BF}=\frac{BA}{BC}\Rightarrow\Delta BDF~\Delta BAC\left(c.g.c\right)\)

28 tháng 2 2021

đúng 6 sai 1

11 tháng 3 2023

hình tự kẻ ạ :3

a)

xét ΔABE và ΔACF có:

\(\left\{{}\begin{matrix}\widehat{A}\left(chung\right)\\\widehat{AFC}=\widehat{AEB}=90^0\left(CF\perp AB;BE\perp AC\right)\end{matrix}\right.\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

\(\Rightarrow\dfrac{AC}{AB}=\dfrac{AF}{AE}\Leftrightarrow AC.AE=AB.AF\)

 

11 tháng 3 2023

ý b hình như sai đề r ạ =))

3 tháng 5 2020

a, XÉt Δ AEF và ΔABC

AE/AF=ABAC⇒AE/AB=AF/AC

góc BACchung

=> Δ AEF ∼ ΔABC (đpcm)

b, mk ko hiểu