K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 2 2024

Lời giải:

$b^2=ac\Rightarrow \frac{b}{a}=\frac{c}{b}$

Đặt $\frac{b}{a}=\frac{c}{b}=k\Rightarrow b=ak; c=bk$

Khi đó:
$\frac{a^{2022}+b^{2022}}{b^{2022}+c^{2022}}=\frac{a^{2022}+(ak)^{2022}}{b^{2022}+(bk)^{2022}}$

$=\frac{a^{2022}(1+k^{2022})}{b^{2022}(1+k^{2022})}=\frac{a^{2022}}{b^{2022}} (1)$

Và:

$(\frac{a+b}{b+c})^{2022}=(\frac{a+ak}{b+bk})^{2022}$

$=[\frac{a(k+1)}{b(1+k)}]^{2022}=(\frac{a}{b})^{2022}=\frac{a^{2022}}{b^{2022}}(2)$

Từ $(1); (2)$ ta có đpcm.

30 tháng 12 2022

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^{2022}+b^{2022}}{c^{2022}+d^{2022}}=\dfrac{b^2k^{2022}+b^{2022}}{d^{2022}k^{2022}+d^{2022}}=\left(\dfrac{b}{d}\right)^{2022}\)

\(\dfrac{\left(a+b\right)^{2022}}{\left(c+d\right)^{2022}}=\dfrac{\left(bk+b\right)^{2022}}{\left(dk+d\right)^{2022}}=\left(\dfrac{b}{d}\right)^{2022}\)

=>\(\dfrac{a^{2022}+b^{2022}}{c^{2022}+d^{2022}}=\dfrac{\left(a+b\right)^{2022}}{\left(c+d\right)^{2022}}\)

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

=>a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0

=>(a-b)^2+(b-c)^2+(a-c)^2=0

=>a=b=c

\(T=\dfrac{a^{2022}+a^{2022}+a^{2022}}{\left(3a\right)^{2022}}=\dfrac{3}{3^{2022}}=\dfrac{1}{3^{2021}}\)

9 tháng 5 2022

\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)

\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)

\(\Rightarrow A< B\)

3a-b=1/2(a+b)

=>6a-2b=a+b

=>5a=3b

=>a/3=b/5=k

=>a=3k; b=5k

\(A=\dfrac{a^{2022}+3^{2022}}{b^{2022}+5^{2022}}\)

\(=\dfrac{3^{2022}\left(k^{2022}+1\right)}{5^{2022}\left(k^{2022}+1\right)}=\left(\dfrac{3}{5}\right)^{2022}\)