Cho \(\Delta ABC\) có \(\widehat{B}=45^o\) , phân giác BD, đường cao AH, \(\widehat{BDA}=45^o\). Chứng minh rằng: HD//AB.
(Giải đầy đủ ra giúp mình nha! ^^)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta DBC\) có:
\(\widehat{ADB}\) là góc ngoài của \(\Delta BCD\)
\(\Rightarrow\widehat{ADB}=\widehat{B_2}+\widehat{C}\)
\(\Rightarrow\widehat{C}=\widehat{ADB}-\widehat{B_2}=45^o-\frac{\widehat{B}}{2}\)
Xét \(\Delta ABC\) có
\(\widehat{A_1}\) là góc ngoài tại đỉnh A
\(\Rightarrow\widehat{A_1}=\widehat{B}+\widehat{C}=\widehat{B}+45^o-\frac{\widehat{B}}{2}\)
\(\Rightarrow\widehat{A_1}=45^o+\frac{\widehat{B}}{2}\) (1)
Xét \(\Delta HAC\) vuông tại H có
\(\widehat{A_2}=90^o-\widehat{C}=90^o-\left(45^o-\frac{\widehat{B}}{2}\right)=45^o+\frac{\widehat{B}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{A_1}=\widehat{A_2}\)
Xét \(\Delta ABH\) có D là giao điểm của một tia phân giác ngoài với một tia phân giác trong không kề
=> tia HD phải là tia phân giác ngoài tại đỉnh H
=> \(\widehat{DHC}=45^o\)
=> HD // AB (vì có cặp góc đồng vị bằng nhau)
Vẽ góc ngoài CAx của ∆ABC tại đỉnh A
Ta thấy HAx là góc ngoài ∆BAH
=> hAx = ABH + AHB = ABC + 90°
=> HAx = 2( ABD + 45°) (1)
Vì CAx là góc ngoài ∆BAD
=> CAx = ABD + BDA = ABD + 45° (2)
Từ (1) và (2)
=> CAx = \(\frac{1}{2}\)HAx
=> AC là phân giác HAx
Xét ∆ABH ta có :
BD là phân giác trong
AD là phân giác ngoài
=> HD là phân giác AHC
=> AHD = \(\frac{1}{2}AHC=45°\)(3)
Xét ∆BAH ta có :
AHB + ABH + BAH = 180°
=> BAH = 45° (4)
Từ (3) và (4) ta có :
=> AHB = BAH = 45°
Mà 2 góc này ở vị trí so le trong
=> HD//AB
Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!
Vẽ góc ngoài ^CAx của tam giác ABC.
Ta có: ^HAx là góc ngoài của tam giác BAH => ^HAx=^ABH+^AHB=^ABC+900.
=> \(\widehat{HAx}=2.\left(\widehat{ABD}+45^0\right)\left(1\right)\)
Để ý ^CAx là góc ngoài tam giác BAD. => ^CAx=^ABD+^BDA
=> \(\widehat{CAx}=\widehat{ABD}+\widehat{BDA}=\widehat{ABD}+45^0\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{CAx}=\frac{1}{2}\widehat{HAx}\)=> AC là phân giác ^HAx
Xét tam giác ABH: BD là phân giác trong; AD là phân giác ngoài
2 tia này cắt nhau tại D => HD là phân giác ^AHC => ^AHD=^AHC/2=450 (3)
Ta thấy tam giác BAH có: ^AHB=900, ^ABH=450 => Tam giác BAH vuông cân tại H
=> ^BAH=450 (4)
Từ (3) và (4) => ^AHD=^BAH=450. Mà 2 góc này nằm ở vị trí So le trong
=> HD//AB (đpcm)
OK nhé bn.