K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để phương trình có 2 nghiệm trái dấu thì \(a\cdot c< 0\)

=>1(2m-1)<0

=>2m-1<0

=>2m<1

=>\(m< \dfrac{1}{2}\)

8 tháng 3 2022

Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt 
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0

Ta có: \(-x^2+mx+4-m^2=0\)

\(\Leftrightarrow x^2-mx+m^2-4=0\)

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

20 tháng 6 2018

4 tháng 5 2019

12 tháng 12 2018

a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)

\(=4m^2-4m+1-4m+4=4m^2-8m+5\)

\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì m-1<0

hay m<1

2 tháng 2 2021

a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)

Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)

Để PT (1) thì PT(2) vô nghiệm:

Để PT(2) vô nghiệm thì: Δ=(1−2m)2−4.(m2−1)<0⇔1−4m+4m2−4m2+4<0

<=>5-4m<0

<=>m>5/4

3 tháng 2 2021

mình cảm ơn ạ,nhưng sai đề rồi bạn ơi