Cho hai số thực phân biệt x,y thoả mãn x^3+y^3=8-6xy.tính x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hằng đẳng thức:\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(x^3+y^3+6xy=8\)
\(\Leftrightarrow\left(x^3+y^3+\left(-2\right)^3+6xy\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left(x^2+y^2+4-xy+2y+2x\right)=0\)
\(\Leftrightarrow x+y=2\)
cho mik hỏi tí nhá bạn có thể giải thích rõ bước cuối cùng ko
a. Đề bài em ghi sai thì phải
Vì:
\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)
b.
Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)
Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R
Hàm bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right)=-8+4a-2b+c>0\)
\(f\left(2\right)=8+4a+2b+c< 0\)
\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)
\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)
\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb
Chắc bạn ghi nhầm căn thức thứ 2
\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)
\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)
\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)
\(A\le18\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=z=4\)
\(x^3+y^3=\left(x+y\right)^3-3\left(xy\right)\left(x+y\right)=1-3xy\)
Có: \(xy\le\frac{\left(x+y\right)^2}{4}\)với mọi x, y
Chứng minh: \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow x^2+y^2+2xy\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\)đúng với mọi x, y.
=> \(xy\le\frac{1}{4}\)=> \(-3xy\ge-\frac{3}{4}\)
=> \(x^3+y^3=\left(x+y\right)^3-3\left(xy\right)\left(x+y\right)=1-3xy\ge1-\frac{3}{4}=\frac{1}{4}\)
"=" xảy ra <=> (x -y)^2 =0 <=> x =y.
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xyz-3x^2y-3xy^2\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]\)
\(=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
\(y=\dfrac{1}{3}\left(m-1\right)x^3-\left(m-1\right)x^2+\left(m+3\right)x-2\)
\(y'=\)\(x^2\left(m-1\right)-2x\left(m-1\right)+m+3\)
a)\(y'=0\)\(\Leftrightarrow x^2\left(m-1\right)-2x\left(m-1\right)+m+3=0\)
Xét m=1 => pt tt: 3=0 (vô lí)
=> \(m\ne1\)
Để y'=0 có hai nghiệm pb cùng dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-16m+16>0\\\dfrac{m+3}{m-1}>0\end{matrix}\right.\)\(\Rightarrow m< -3\)
b)y'=0 có hai nghiệm \(\Leftrightarrow\Delta\ge0\) \(\Leftrightarrow m\le-3\)
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m-1}=2\\x_1x_2=\dfrac{m+3}{m-1}\end{matrix}\right.\)
Có x12+x22=4
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\)\(4-\dfrac{2\left(m+3\right)}{m-1}=4\)
\(\Leftrightarrow m=-3\) (tm)
Vậy m=-3
(đúng không ạ?)
\(x^3+y^3=8-6xy\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-8+6xy=0\)
\(\Leftrightarrow\left(x+y\right)^3-2^3-3xy\left(x+y-2\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2\left(x+y\right)+4\right]-3xy\left(x+y-2\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left(x^2+y^2-xy+2x+2y+4\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left(2x^2+2y^2-2xy+4x+4y+8\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y-2=0\\\left(x-y\right)^2=\left(x+2\right)^2=\left(y+2\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+y=2\\x=y=-2\left(loại\right)\end{matrix}\right.\)