A, cho a và b chia 3 có cùng số dư, chứng tỏ : a~b chia hết cho 3
B, chứng minh : T = abcabc chia hết cho 7 ;11;13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)
Ta có a = 7m + r, b = 7n + r (m, n ∈ N)
Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)
Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7
Gọi 2 số đã cho là a và b (a,b thuộc N và a phải lớn hơn hoặc bằng b )
Nên: a=9 k1+ r
b=9 k2+r
Ta có: Hiệu a-b = (9 k1+r) - (9 k2 +r)
= 9 k1+r - 9 k2-r
= 9 k1 - 9 k2 + r-r
= 9.k1-9.k2
= 9. (k1+k2) chia hết cho 9
Hay (a-b) chia hết cho 9
Vậy hai số chia hết cho 9 có cùng số dư thì hiệu chúng chia hết cho 9
Nhớ k đúng cho mình nha!
~ là trừ
Tớ làm phần b trước nha !
Ta có : abcabc = abc000 + abc
= abc x 1000 + abc
= abc x ( 1000 + 1 )
= abc x 1001
= abc x 7 x 11 x 13
Vậy abcabc chia hết cho 7 ; 11 và 13