K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2015

gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)

25 tháng 11 2016

cảm ơn 

16 tháng 11 2014

buoc cuoi la 1 chia het cho d

26 tháng 10 2015

http://olm.vn/hoi-dap/question/15355.html

TICK NHÉ

19 tháng 11 2016

Gọi d là ƯCLN(2n+5;3n+7)

Theo đề bài ra ta có: 2n+5 chia hết cho d => 3(2n+5)= 6n+15 chia hết cho d

                                  3n+7 chia hết cho d => 2(3n+7)=6n+14 chia hết cho d

Vì 6n+15 chia hết cho d

    6n+14 chia hết cho d

=> (6n+15)-(6n+14)=1 chia hết cho d

=> d thuộc Ư(1)={1;-1}

Vì d thuộc Ư của 1 => 2n+5 và 3n+7 nguyên tố cùng nhau       ĐPCM

19 tháng 11 2016

2n + 5 và 3n + 7

gọi d là UWCLN(2n + 5 ; 3n + 7 )

=> 2n + 5 : d => 3(2n+5) = 6n+ 15 :d

và 3n + 7 : d => 2(3n+7) = 6n + 14 : d

=> 6n + 15 - 6n + 14= 1

vậy 2n + 5 và 3n + 7 là số nguyên tố cùng nhau

k mik nhé

24 tháng 7 2023

Câu 1: 2n + 5 và 3n + 7

    Gọi ước chung lớn nhất của 2n + 5 và 3n + 7 là d

        Theo bài ra ta có: 

         \(\left\{{}\begin{matrix}2n+5⋮d\\3n+7⋮d\end{matrix}\right.\)

     ⇔ \(\left\{{}\begin{matrix}6n+15⋮d\\6n+14⋮d\end{matrix}\right.\)

          6n + 15 -  6n  - 14 ⋮ d

                                    1 ⋮ d

         ⇒ d = 1

Vậy ước chung lớn nhất của 2n + 5 và 3n + 7 là 1

Hay 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau (đpcm)

24 tháng 7 2023

gọi 2.n +1 là một số lẻ bất kì (n thuộc N )

suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp  

gọi d thuoocj vào ƯC(2n+1,2n+3 )  (d thuộc N*)

suy ra 2n+1 và 2n+3 chia hết cho d 

suy ra [(2n+3) - (2n+1)] chia hết cho d 

suy ra 2 chia hết cho d

suy ra d thuộc Ư(2) ={1;2}

 suy ra d khác 2 (vì  2n+1 và 2n+3 là các số lẻ )

suy ra d =1 

suy ra ƯC (2n+1 ,2n+3 ) =1

suy ra UWCLN (3n+1 , 2n+3) =1

suy ra 2n +1 và 2n+3 nguyên tố cùng nhau 

vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau . 

30 tháng 4 2020

Ta có: 

(2n + 5 ; 3n + 7 ) = ( 2n + 5 ; n + 2 ) = ( n + 2 ; n + 3 ) = 1 

=> 2n + 5 và 3n + 7 nguyên tố cùng nhau.

30 tháng 4 2020

Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈∈N*)

⇒⎧⎨⎩2n+5⋮d3n+7⋮d⇒{2n+5⋮d3n+7⋮d                        ⇒⎧⎨⎩3(2n+5)⋮d2(3n+7)⋮d⇒{3(2n+5)⋮d2(3n+7)⋮d                        ⇒⎧⎨⎩6n+15⋮d6n+14⋮d⇒{6n+15⋮d6n+14⋮d

⇒⇒ (6n + 15) – (6n + 14) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(2n + 5; 3n + 7) = 1

Vậy hai số 2n + 5 và 3n +7 là hai số nguyên tố cùng nhau.

23 tháng 11 2017

Gọi ƯCLN(2n+5,3n+7) là d

Ta có: 2n+5 chia hết cho d => 6n+15 chia hết cho d

3n+7 chia hết cho d => 6n+14 chia hết cho d

=> 6n+15-(6n+14) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy... 

23 tháng 12 2021

a) Đặt UCLN (2n+1;2n+3)=d

TC UCLN(2n+1;2n+3)=d

=>\(\hept{\begin{cases}2n+1:d\\2n+3:d\end{cases}}\)

=>(2n+3)-(2n+1):d

=>2:d

=>d e U(2)={1;2}

Mà 2n+1 lẻ=> d lẻ=>d=1

b) 

Đặt UCLN (2n+5;3n+7)=d

TC UCLN(2n+5;3n+7)=d

=>\(\hept{\begin{cases}2n+5:d=>6n+15:d\\3n+7:d=>6n+14:d\end{cases}}\)

=>(6n+15)-(6n+14):d

=>1:d

=>d=1

phần c bạn tự làm nốt nhé

học tốt nhé