K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1

a.

D E thuộc Ox \(\Rightarrow\) tọa độ E có dạng \(E\left(x;0\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{OE}=\left(x;0\right)\\\overrightarrow{OM}=\left(4;1\right)\end{matrix}\right.\)

Tam giác OEM cân tại O \(\Rightarrow OE=OM\)

\(\Rightarrow\sqrt{x^2+0^2}=\sqrt{4^2+1^2}\Rightarrow x^2=17\)

\(\Rightarrow x=\pm\sqrt{17}\Rightarrow\left[{}\begin{matrix}E\left(\sqrt{17};0\right)\\E\left(-\sqrt{17};0\right)\end{matrix}\right.\)

b.

\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-4;-1\right)\\\overrightarrow{MB}=\left(-4;b-1\right)\end{matrix}\right.\)

Tam giác ABM vuông tại M \(\Rightarrow\overrightarrow{MA}.\overrightarrow{MB}=0\)

\(\Rightarrow-4\left(a-4\right)-1\left(b-1\right)=0\)

\(\Leftrightarrow4a+b-17=0\Rightarrow b=17-4a\)

Lại có \(S_{ABM}=\dfrac{1}{2}MA.MB=\dfrac{1}{2}\sqrt{\left(a-4\right)^2+1}.\sqrt{\left(b-1\right)^2+16}\)

\(=\dfrac{1}{2}\sqrt{\left(a-4\right)^2+1}.\sqrt{\left(16-4a\right)^2+16}=\dfrac{1}{2}\sqrt{\left(a-4\right)^2+1}.\sqrt{16\left[\left(a-4\right)^2+1\right]}\)

\(=2\left[\left(a-4\right)^2+1\right]\ge2\)

Dấu "=" xảy ra khi \(a-4=0\Rightarrow a=4\Rightarrow b=1\)

NV
5 tháng 1

2.

Gọi \(H\left(x;y\right)\) là toạ độ chân đường cao ứng với BC \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AH}=\left(x-1;y+2\right)\\\overrightarrow{BC}=\left(2;1\right)\end{matrix}\right.\)

Do AH vuông góc BC \(\Rightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)

\(\Rightarrow2\left(x-1\right)+y+2=0\Leftrightarrow y=-2x\)

 \(\Rightarrow H\left(x;-2x\right)\Rightarrow\overrightarrow{BH}=\left(x+2;-2x-3\right)\)

Do H thuộc BC nên B, C, H thẳng hàng hay các vecto \(\overrightarrow{BC};\overrightarrow{BH}\) cùng phương

\(\Rightarrow\dfrac{x+2}{2}=\dfrac{-2x-3}{1}\Rightarrow x=\dfrac{8}{5}\Rightarrow y=-\dfrac{16}{5}\) \(\Rightarrow H\left(-\dfrac{8}{5};\dfrac{16}{5}\right)\)

\(\Rightarrow\overrightarrow{AH}=\left(-\dfrac{13}{5};\dfrac{26}{5}\right)\Rightarrow\left\{{}\begin{matrix}AH=\sqrt{\left(-\dfrac{13}{5}\right)^2+\left(-\dfrac{6}{5}\right)^2}=\dfrac{13\sqrt{5}}{5}\\BC=\sqrt{2^2+1^2}=\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{13}{2}\)

NV
5 tháng 1

3.

loading...

Kẻ AD vuông góc BC tại D

\(\Rightarrow AD=BH=10\) ; \(BD=AH=4\)

\(tan\widehat{BAD}=\dfrac{BD}{AD}=\dfrac{2}{5}\Rightarrow\widehat{BAD}\approx21^048'5''\)

\(\Rightarrow\widehat{CAD}=60^0-\widehat{BAD}=38^011'55''\)

\(\Rightarrow CD=AD.tan\widehat{CAD}=7,87\left(m\right)\)

\(\Rightarrow BC=BD+CD=11,87\left(m\right)\)

a: E thuộc Ox nên E(x;0)

O(0;0); M(4;1); E(x;0)

\(OM=\sqrt{\left(4-0\right)^2+\left(1-0\right)^2}=\sqrt{17}\)

\(OE=\sqrt{\left(x-0\right)^2+\left(0-0\right)^2}=\sqrt{x^2}=\left|x\right|\)

Để ΔOEM cân tại O thì OE=OM

=>\(\left|x\right|=\sqrt{17}\)

=>\(x=\pm\sqrt{17}\)

26 tháng 12 2022

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)

Ta lấy vễ trên chia vế dưới

\(=3.2=6\)

\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)

Ta lấy vế trên chia vế dưới

\(=2^3.3=24\)

26 tháng 12 2022

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)

19 tháng 12 2022

a. Trọng lượng của vật là:

P=10.m= 10.15=150N

Trọng lực có phương thẳng đứng, chiều từ trên xuống dưới.loading...b. loading...c.Trọng lượng của vật là:

P= 10.m= 10.6=60N

Trọng lượng có phương thẳng, đứng chiều từ trên xuống dưới.

Vì vật đang đứng yên, nên chứng tỏ đã có 2 lực cân bằng tác dụng vào vật. Đó là trọng lực và lực nâng (P = Q)loading...

 

13 tháng 1 2022

a) Điện trở tương đương của đoạn mạch :

\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{60.40}{60+40}=24\left(\Omega\right)\)

b) Hiệu điện thế giữa hai đầu đoạn mạch :

\(U=I.R_{tđ}=2.24=48\left(V\right)\)

⇒ \(U=U_1=U_2=48\left(V\right)\) (vì R1 // R2)

Cường độ dòng điện chạy qua mỗi điện trở :

\(I_1=\dfrac{U_1}{R_1}=\dfrac{48}{60}=0,8\left(A\right)\)

\(I_2=\dfrac{U_2}{R_2}=\dfrac{48}{40}=1,2\left(A\right)\)

 Chúc bạn học tốt

a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

b: Xét ΔABI có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABI cân tại A

hay AB=AI

30 tháng 3 2022

Cảm ơn ạ nhưng em chưa học tới đường trung tuyết gì đâu ạ, em cần lời giải khác ạ