K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

a: Ta có: \(x^2-4y^2-2x-4y\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

c: Ta có: \(x^3+2x^2y-x-2y\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

e: Ta có: \(x^3-4x^2-9x+36\)

\(=x^2\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)

f: Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

27 tháng 9 2023

a) \(x^4-y^4\)

\(=\left(x^2\right)^2-\left(y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

b) \(x^2-3y^2\)

\(=x^2-\left(y\sqrt{3}\right)^2\)

\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)

c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)

\(=\left(3x-2y+2x-3y\right)\left(3x-2y-3x+2y\right)\)

\(=0\cdot0\)

\(=0\)

d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)

\(=\left(3x-3y\right)^2-\left(2x+2y\right)^2\)

\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\)

\(=\left(x-5y\right)\left(5x-y\right)\)

e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)

\(=\left(2x-1\right)^2-\left(x+1\right)^2\)

\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)

\(=3x\left(x-2\right)\)

f) \(x^3+27\)

\(=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

g) \(27x^3-0,001\)

\(=\left(3x\right)^3-\left(0,1\right)^3\)

\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)

h) \(125x^3-1\)

\(=\left(5x\right)^3-1^3\)

\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)

27 tháng 9 2023

c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)

\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)

\(=\left(5x-5y\right)\left(x+y\right)\)

\(=5\left(x+y\right)\left(x-y\right)\)

a) \(\left(x^2+2x+1\right)\left(x+1\right)\)

\(=x^3+x^2+2x^2+2x+x+1\)

\(=x^3+3x^2+3x+1\)

b) Ta có: \(\left(x^3-x^2+2x-1\right)\left(5-x\right)\)

\(=5x^3-x^4-5x^2+x^3+10x-2x^2-5+5x\)

\(=-x^4+6x^3-7x^2+15x-5\)

Ta có: \(\left(x-5\right)\left(x^3-x^2+2x-1\right)\)

\(=-\left(5-x\right)\left(x^3-x^2+2x-1\right)\)

\(=x^4-6x^3+7x^2-15x+5\)

17 tháng 11 2021

\(1,\\ a,=2x^2+2x\\ b,=x^2+4x+3-4=x^2+4x-1\\ c,=x^2+4x+4+3x-5=x^2+7x-1\\ 2,\\ a,=3\left(x+y\right)\\ b,=\left(x-3\right)^2\\ c,=7\left(x+y\right)\\ 3,\\ \Leftrightarrow\left(x-1\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)

17 tháng 11 2021

a) 2x2+2x

  điền đúng sai                                                                                                                                                                                Kết quả phép nhân ( x – 5 ) (2x + 5 ) là 2x2 – 25x           Nếu y = 1 thì giá trị của biểu thức4y(y – 1) - (y – 1 ) = 0Kết quả phân tích thành nhân tửx2 – 3 = ( x + 3...
Đọc tiếp

  điền đúng sai                                                                                                                                                                                Kết quả phép nhân ( x – 5 ) (2x + 5 ) là 2x2 – 25x           

Nếu y = 1 thì giá trị của biểu thức

4y(y – 1) - (y – 1 ) = 0

Kết quả phân tích thành nhân tử

x2 – 3 = ( x + 3 ) ( x – 3 )

( x – 15)2 = ( 15 – x )2 với mọi x

Kết quả phân tích x3 – 2x2 + x là x( x – 1 )2

Điều kiện của n để phép chia yn+1 : y4 thực hiện

được là n

 

 

II. PHẦN TỰ LUẬN: ( 7đ )

Bài 1 : ( 2đ ) Thực hiện phép tính:

1/ ( 5x2 – 2x + 2 ) ( x - 2 )

2/ (x2 y2 – 4xy + 2y ) ( x – 2y )

Bài 2 : ( 2,5đ ) Phân tích các đa thức sau thành nhân tử:

1/ x2 - 2x + 1

2/ y2 + x – xy - y

3/ 3x – 3y +x2 – 2xy + y2

Bài 3 : ( 1.5đ )Làm tính chia ( x4 - x3 + x2 + 3x ) : ( x2 – 2x + 3)

Bài 4 : (1 đ )Tìm GTLN hoặc GTNN của biểu thức x2 + 2x + 6

0
18 tháng 7 2021

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

16 tháng 8 2021

a) \(\left(x-2\right)^2+4x=x^2-4x+4+4x=x^2+4\)

b) \(a^3-27=\left(a-3\right)\left(a^2+3a+9\right)\)

a) \(4a^2+2ab=2a\left(2a+b\right)\)

c)\(x^2-xy+2x-2y=\left(x^2-xy\right)+\left(2x-2y\right)=x\left(x-y\right)+2\left(x-y\right)=\left(x+2\right)\left(x-y\right)\)