Cho a và b là 2 số nguyên . Chứng minh rằng
A) Nếu 2a+b ⋮ 13 và5a−4b ⋮ 13 thì a−6b ⋮ 13
B) Nếu 100a+b ⋮ 7 thì a+4b ⋮ 7
C) Nếu 3a+4b ⋮ 11 thì a+5b ⋮ 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
Bài làm:
a, Ta có: 98⋮7⇒98a⋮798⋮7⇒98a⋮7. Mà 100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7
⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7
Mặt khác 7a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮77a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮7 (đpcm)
Vậy...
b, Ta có: 3a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮113a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮11
Mà 11(a+b)⋮11⇒11a+11b⋮1111(a+b)⋮11⇒11a+11b⋮11
⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11
⇒a+5b⋮11⇒a+5b⋮11 (đpcm)
Vậy...
a, Ta có: \(2a+b⋮13\Rightarrow2.\left(2a+b\right)⋮13\Rightarrow4a+2b⋮13\)
Mà \(5a-4b⋮13\) \(\Rightarrow\left(5a-4b\right)-\left(4a+2b\right)⋮13\Rightarrow5a-4b-4a-2b⋮13\)
\(\Rightarrow a-6b⋮13\) (đpcm)
Vậy...
b, Ta có: \(98⋮7\Rightarrow98a⋮7\). Mà \(100a+b⋮7\Rightarrow\left(100a+b\right)-98a⋮7\Rightarrow100a+b-98a⋮7\)
\(\Rightarrow2a+b⋮7\Rightarrow4.\left(2a+b\right)⋮7\Rightarrow8a+4b⋮7\)
Mặt khác \(7a⋮7\Rightarrow8a+4b-7a⋮7\Rightarrow a+4b⋮7\) (đpcm)
Vậy...
b, Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)
Mà \(11\left(a+b\right)⋮11\Rightarrow11a+11b⋮11\)
\(\Rightarrow\left(12a+16b\right)-\left(11a+11b\right)⋮11\Rightarrow12a+16b-11a-11b⋮11\)
\(\Rightarrow a+5b⋮11\) (đpcm)
Vậy...
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Ta có : 2a + b chia hết cho 13
=> 10a + 5b chia hết cho 13
=> 10a - 8b + 13b chia hết cho 13
=> (10a - 8b) + 13b chia hết cho 13
=> 2(5a - 4b) + 13b chia hết cho 13
Vì 13b chia hết cho 13
Nên : 2(5a - 4b) chia hết cho 13
=> 5a - 4b chia hết cho 13 (đpcm)