K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 1

Phương trình trên có nghiệm kép khi:

\(\Delta'=\left(m-9\right)^2-\left(m+7\right)\left(-7m+15\right)=0\)

\(\Leftrightarrow8\left(m^2+2m-3\right)=0\)

\(\Leftrightarrow8\left(m-1\right)\left(m+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

- Với \(m=1\) nghiệm kép của pt là \(x=\dfrac{m-9}{m+7}=-1\)

- Với \(m=-3\) nghiệm kép của pt là \(x=\dfrac{m-9}{m+7}=-3\)

NV
21 tháng 1

a.

\(f\left(x\right)=0\) có nghiệm \(x=1\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1-2\left(m-2\right)+m+10=0\)

\(\Rightarrow m=15\)

Khi đó nghiệm còn lại là: \(x_2=\dfrac{m+10}{x_1}=\dfrac{25}{1}=25\)

b.

Pt có nghiệm kép khi: \(\Delta'=\left(m-2\right)^2-\left(m+10\right)=0\)

\(\Rightarrow m^2-5m-6=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=6\end{matrix}\right.\)

Với \(m=-1\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=-3\)

Với \(m=6\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=4\)

c.

Pt có 2 nghiệm âm pb khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m-6>0\\x_1+x_2=2\left(m-2\right)< 0\\x_1x_2=m+10>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>6\end{matrix}\right.\\m< 2\\m>-10\end{matrix}\right.\) \(\Rightarrow-10< m< -1\)

d.

\(f\left(x\right)< 0;\forall x\in R\Rightarrow\left\{{}\begin{matrix}a=1< 0\left(\text{vô lý}\right)\\\Delta'=m^2-5m-6< 0\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

21 tháng 1

e cảm ơn ạ

a) Thay \(m=1\) vào phương trình, ta được:

  \(x^2+12x-4=0\) \(\Rightarrow\left[{}\begin{matrix}x=-6+2\sqrt{10}\\x=-6-2\sqrt{10}\end{matrix}\right.\)

  Vậy ...

b) 

+) Với \(m=0\) \(\Rightarrow12x-4=0\) \(\Leftrightarrow x=\dfrac{1}{3}\)

+) Với \(m\ne0\), ta có: \(\Delta'=36+4m\)

 Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow m>-9\)

   Vậy \(\left\{{}\begin{matrix}m\ne0\\m>-9\end{matrix}\right.\) thì phương trình có 2 nghiệm phân biệt

c) Để phương trình có nghiệm kép \(\Leftrightarrow\Delta'=0\) \(\Leftrightarrow m=-9\)

\(\Rightarrow-9x^2+12x-4=0\) \(\Leftrightarrow x=\dfrac{2}{3}\)

   Vậy \(m=-9\) thì phương trình có nghiệm kép \(x_1=x_2=\dfrac{2}{3}\)

d) Để phương trình vô nghiệm \(\Leftrightarrow\Delta'< 0\) \(\Leftrightarrow m< -9\)

   Vậy \(m< -9\) thì phương trình vô nghiệm

 

3 tháng 5 2022

1. 

xét delta có 

25 -4(-m-3)

= 25 + 4m + 12 

= 4m + 37 

để phương trình có nghiệm kép thì delta = 0 

=> 4m + 37 = 0 => m = \(\dfrac{-37}{4}\)

2. 

a) xét delta 

25 - 4(m-3) = 25 - 4m + 12 = -4m + 37 

để phương trình có nghiệm kép thì delta = 0 

=> -4m + 37 = 0 

=> m = \(\dfrac{37}{4}\)

b)

xét delta 

25 - 4(m-3) = 25 - 4m + 12 = -4m + 37 

để phương trình có 2 nghiệm phân biệt thì delta > 0 

=> -4m + 37 > 0 

=> m < \(\dfrac{37}{4}\)

Để phương trình có nghiệm kép thì 6^2-4(m-2)=0

=>4(m-2)=36

=>m-2=9

=>m=11

=>x^2+6x+9=0

=>x=-3

NV
1 tháng 4 2021

a. Bạn tự giải

b. Pt có nghiệm kép khi:

\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)

Khi đó: \(x_{1,2}=m+1=2\)

c. Do pt có nghiệm bằng 4:

\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)

\(\Leftrightarrow8-4m=0\Rightarrow m=2\)

\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)

11 tháng 3 2022

\(\Delta'=\left(m+3\right)^2-\left(m^2-2\right)=6m+9+4=6m+13\)

Để pt có 2 nghiệm kép khi \(6m+13=0\Leftrightarrow m=-\dfrac{13}{6}\)

\(x_1=x_2=2\left(m+3\right)=2\left(-\dfrac{13}{6}+3\right)=\dfrac{5}{3}\)

1: \(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-m+1\right)\)

=1+4m-4

=4m-3

Để phương trình có nghiệm kép thì 4m-3=0

hay m=3/4

Thay m=3/4 vào pt, ta được: \(x^2-x+\dfrac{1}{4}=0\)

hay x=1/2

2: Để phương trình có hai nghiệm thì 4m-3>=0

hay m>=3/4

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2x_1+x_2=5\\x_1+x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=4\\x_2=-3\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=-m+1\)

=>1-m=-12

hay m=13

a: TH1: m=3

=>2x-5=0

=>x=5/2(nhận)

TH2: m<>3

Δ=2^2-4*(m-3)*(-5)

=4+20(m-3)

=4+20m-60=20m-56

Để phương trình có nghiệm kép thì 20m-56=0

=>m=2,8

=>-0,2x^2+2x-5=0

=>x^2-10x+25=0

=>x=5

b: Để phươg trình có hai nghiệm pb thì 20m-56>0

=>m>2,8

a: \(\Delta=\left(2m-6\right)^2-4\cdot1\cdot\left(m-3\right)\)

\(=4m^2-24m+36-4m+12\)

\(=4m^2-28m+48\)

\(=4\left(m-3\right)\left(m-4\right)\)

Để phương trình có nghiệm kép thì (m-3)(m-4)=0

=>m=3 hoặc m=4

b: Trường hợp 1: m=7/2

Phương trình sẽ là \(2\cdot\left(2\cdot\dfrac{7}{2}+5\right)x-14\cdot\dfrac{7}{2}+1=0\)

\(\Leftrightarrow24x-48=0\)

hay x=2

=>Nhận

Trường hợp 2: m<>7/2

\(\Delta=\left(4m+10\right)^2-4\cdot\left(2m-7\right)\left(-14m+1\right)\)

\(=16m^2+80m+100-4\left(-28m^2+2m+98m-7\right)\)

\(=16m^2+80m+100+112m^2-400m+28\)

\(=128m^2-320m+128\)

\(=64\left(2m^2-5m+2\right)\)

Để phương trình có hai nghiệm phân biệt thì (2m-1)(m-1)=0

=>m=1 hoặc m=1/2