Chứng tỏ rằng: Với n thuộc Z :n2 + n + 3 không chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\\ \) luôn chia hết cho 3
\(\Rightarrow n^3-n+2\) không chia hết cho 3=> không chia hết cho 6 => dpcm
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
(n+1)(n+2)+12
=(n+1)*n+(n+1)*2+12
=n2+1n+2n+2+12
=n2+(1+2)n+(2+12)
=n2+3n+14
=n*n+3n+14
=n(n+3)+14
Vì 14 không chia hết cho 9 nên n(n+3) không chia hết cho 9
nên n(n+3)+14 không chia hết cho 9
nên (n+1)(n+2)+12 không chia hết cho 9 với mọi n
Vậy với mọi n thuộc Z thì (n+1)(n+2)+12 không chia hết cho 9
cái này mình làm bậy, ko biết có đúng k
chúc bạn học tốt!^_^
nếu n = 2 => (n+1)(n+2) + 12 = 24 không chia hết cho 9
=> (n+1)(n+2) + 12 không chia hết cho 9 với mọi n
a)Nếu n=2k(kEN)
thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)
Nếu n=2k+1(kEN)
thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)
Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2
b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n
Nếu n=2k(kEN )
thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)
Nếu n=2k+1(kEN)
thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................
tương tự, n=3k;3k+1;3k+2
mỏi tay chết đi được, mấy con số còn bay đi lung tung
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1) chia hết cho 3!
=>n(n-1)(n+1) chia hết cho 3
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1) chia hết cho 3!
=>n(n-1)(n+1) chia hết cho 3
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
Ta có :
n2+ n + 3= n(n+1)+3
n, n+1 là 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2, 3 không chia hết 2 nên n2+ n+ 3 không chia hết cho 2
Xe't n la`` số chẵn , ta co' : n \(⋮\)2 , n2 \(⋮\)2 => n + n2 \(⋮\)2
3 không chia hết cho 2 => n + n2 + 3 không chia hết cho 2
Xét n là số lẻ => n không chia hết cho 2 , n2 không chia hết cho 2 => n + n2 \(⋮\)2
3 không chia hết cho 2 => n + n2 + 3 không chia hết cho 2
Với n thuộc Z thì n2 + n + 3 không chia hết cho 2