TÍNH NHANH : 3/2+3/8+3/32+3/128+3/512
LÀM ƠN GÚP MÌNH VỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tổng trên là: \(A\)
\(A=\dfrac{3}{2}+\dfrac{3}{8}+\dfrac{3}{32}+\dfrac{3}{128}+\dfrac{3}{512}\)
\(\Rightarrow A.4=6+\dfrac{3}{2}+\dfrac{3}{8}+\dfrac{3}{32}+\dfrac{3}{128}\)
\(\Rightarrow A.4-A=\left(6+\dfrac{3}{2}+\dfrac{3}{8}+\dfrac{3}{32}+\dfrac{3}{128}\right)-\left(\dfrac{3}{2}+\dfrac{3}{8}+\dfrac{3}{32}+\dfrac{3}{128}+\dfrac{3}{512}\right)\)
\(\Rightarrow A.3=6-\dfrac{3}{512}=\dfrac{3069}{512}\)
\(\Rightarrow A=\dfrac{3069}{512}:3=\dfrac{1023}{512}\)
\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)
\(=3.\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)\)
\(=3.A\)với \(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\)
\(\Rightarrow2^2A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}\right)\)
\(\Rightarrow2^2A-A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)\)
\(\Rightarrow4A-A=2-\frac{1}{2^9}\)
\(\Rightarrow3A=2-\frac{1}{512}=\frac{1023}{512}\Rightarrow A=\frac{1023}{512}:3\)
\(\Rightarrow\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}=3.\left(\frac{1023}{512}:3\right)=\frac{1023}{512}\)
\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)
\(=\left(\frac{12}{8}+\frac{3}{8}\right)+\left(\frac{12}{128}+\frac{3}{128}\right)+\frac{3}{512}\)
\(=\frac{15}{8}+\frac{15}{128}+\frac{3}{512}\)
\(=\frac{240}{128}+\frac{15}{128}+\frac{3}{512}\)
\(=\frac{255}{128}+\frac{3}{512}\)
\(=\frac{1020}{512}+\frac{3}{512}\)
\(=\frac{1023}{512}\)
\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}=\frac{3}{1.2}+\frac{3}{2.4}+\frac{3}{4.8}+\frac{3}{8.16}+\frac{3}{16.32}\)
\(=\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{4}+\frac{3}{8}-\frac{3}{8}+\frac{3}{16}-\frac{3}{16}+\frac{3}{32}\)
\(=3+\frac{3}{32}=\frac{3.32}{32}+\frac{3}{32}=\frac{96+3}{32}=\frac{99}{32}\)
\(...=\dfrac{3}{2}x\left(1+\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{64}+\dfrac{1}{256}\right)\)
\(=\dfrac{3}{2}x\left(\dfrac{256}{256}+\dfrac{64}{256}+\dfrac{16}{256}+\dfrac{4}{256}+\dfrac{1}{256}\right)\)
\(=\dfrac{3}{2}x\dfrac{341}{256}=\dfrac{1023}{512}\)
\(P+\frac{1}{512}=\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{4}{512}=\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{4}{128}=\)
\(=\frac{3}{2}+\frac{3}{8}+\frac{4}{32}=\frac{3}{2}+\frac{4}{8}=\frac{4}{2}=2\)
\(\Rightarrow P=2-\frac{1}{512}=\frac{1023}{512}\)
\(P=\frac{3}{2}+\frac{3}{8}+...+\frac{3}{512}\)
\(=3.\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)\)
\(4P=3\left(\frac{1}{2^3}+\frac{1}{2^5}+...+\frac{1}{2^{11}}\right)\)
\(4P-P=3\left(\frac{1}{2}-\frac{1}{2^{11}}\right)\)
\(3P=3\left(\frac{1}{2}-\frac{1}{2^{11}}\right)\)
\(P=\frac{1}{2}-\frac{1}{2^{11}}=\frac{2^{10}-1}{2^{11}}\)
Đặt A=3/2+3/8+...+3/512
bn tách
3/2=3/2^1
3/8=3/2^3
....
3/512=3/2^9
Rồi nhân nó lên trừ đc bao nhiêu - đi A ban đầu là đc
Chúc bạn học tốt
=768/512+192/512+48/512+12/512+3/512
=768+192+48+12+3/512
=1023/512