phân tích đa thức thành nhân tử:\(x^3+9x^2+6x-16\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-9x^2+6x+16=\left(x^3+x^2\right)-\left(10x^2+10x\right)+\left(16x+16\right)\)
\(=x^2.\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2-10x+16\right)\)
\(=\left(x+1\right).\left[\left(x^2-8x\right)-\left(2x-16\right)\right]\)
\(=\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(x-8\right)\)
x^3-9x^2+6x+16
=x^3+x^2-10x^2-10x+16x+16
=(x^3+x^2)-(10x^2+10x)+(16x+16)
=x^2(x+1)-10x(x+1)+16(x+1)
=(x+1)(x^2-10x+16)
=(x+1)(x^2-2x-8x+16)
=(x+1)[(x^2-2x)-(8x-16)]
=(x+1)[x(x-2)-8(x-2)]
=(x+1)(x-2)(x-8)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
a, = (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4) = (x-1).(x-2)^2
b, = (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ] = (x+1).(x-2).(x-8)
k mk nha
a)= (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4)
= (x-1).(x-2)^2
b)= (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ]
= (x+1).(x-2).(x-8)
P/s tham khảo nha
a) \(x^3+5x^2+8x+4=x^3+x^2+4x^2+4x+4x+4\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)
b) \(x^3-9x^2+6x+16=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)
\(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
\(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(x-2\right).\)
\(x^2\left(x-2\right)-4x\left(x-2\right)+\left(x-2\right)\)
vậy................
\(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(x-2\right)\)
\(x^2\left(x-2\right)-4x\left(x-2\right)+\left(x-2\right)\)
Vậy ........
\(x^3+9x^2+6x-16\)
\(=x^3+x^2-2x+8x^2+8x-16\)
\(=x\left(x^2+x-2\right)+8\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x+8\right)\)
\(=\left(x^2-x+2x-2\right)\left(x+8\right)\)
\(=\left[x\left(x-1\right)+2\left(x-1\right)\right]\left(x+8\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x+8\right)\)