chứng minh a = 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + chấm chấm chấm + 2 mũ 2010 chia hết cho 3 và bảy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Úi gời cơi cộng chấm chấm chấm :)))
+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{2009}.3\)
\(A=3\left(2+2^3+...+2^{2010}\right)⋮3\)
-> Đpcm
+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{2008}\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{2008}.7\)
\(A=7\left(2+2^4+...+2^{2008}\right)⋮7\)
-> Đpcm
Trời trời, mình làm cho bạn câu khi nãy bạn phải biết vận dụng cho mấy bài sau chứ, câu này giống i lột câu khi nãy luôn ấy, nhưng thôi, khá rảnh nên:vv
+Ta có: \(B=3+3^2+3^3+3^4+...+3^{2010}\)
-> \(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
-> \(B=3.4+3^3.4+...+3^{2009}.4\)
-> \(B=4\left(3+3^3+...+3^{2009}\right)⋮4\)
-> Đpcm
+ Ta có: \(B=3+3^2+3^3+3^4+....+3^{2010}\)
-> \(B=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
-> \(B=3.13+3^4.13+...+.3^{2008}.13\)
-> \(B=13\left(3+3^4+...+3^{2008}\right)⋮13\)
-> Đpcm
Ta có: \(B=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=3^1\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2009}\cdot\left(1+3\right)\)
\(=\left(1+3\right)\cdot\left(3^1+3^3+...+3^{2009}\right)\)
\(=4\cdot\left(3+3^3+...+3^{2009}\right)⋮4\)(đpcm)
Ta có: \(B=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=3\left(1+3+3^2\right)+3^4\cdot\left(1+3+3^2\right)+...+3^{2008}\cdot\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\cdot\left(3+3^4+...+3^{2008}\right)\)
\(=13\cdot\left(3+3^4+...+3^{2008}\right)⋮13\)(đpcm)
... tìm số dư khi chia hết???
nếu nó chia hết thì số dư bằng 0 rồi
B = 31 + 32 + 33 + ... + 328 + 329 + 330
B = ( 31 + 32 + 33 ) + ... + ( 328 + 329 + 330 )
B = 31 . ( 1 + 3 + 32 ) + ... + 328 . ( 1 + 3 + 32 )
B = 31 . 13 + ... + 328 . 13
B = 13 . ( 3 + ... + 328 ) \(⋮\)13
Vậy B \(⋮\)13 ( dpcm )
\(B=3^1+3^2+3^3+3^4+3^5+............+3^{30}\)
\(\Rightarrow B=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+............+\left(3^{28}+3^{29}+3^{30}\right)\)
\(\Rightarrow B=3^1.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+.........+3^{28}.\left(1+3+3^2\right)\)
\(\Rightarrow B=3^1.13+3^4.13+.........+3^{28}.13\)
\(\Rightarrow B=13\left(3^1+3^4+.........+3^{28}\right)\)
Mà 13 \(⋮\)13 \(\Rightarrow13\left(3^1+3^4+...........+3^{28}\right)⋮13\)
Vậy B chia hết cho 13
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
A = 3 + 32 + 33 + ... + 3100
Số số hạng của A = ( 100 - 1 ) : 1 + 1 = 100 ssh . Ta chia A thanh 25 nhóm , mỗi nhóm cs 4 ssh .
=> A = ( 3 + 32 + 33 + 34 ) + .... + ( 397 + 398 + 399 + 3100 )
A = 3. ( 1 + 3 + 32 + 33 ) + .... + 397.( 1 + 3 + 32 + 33 )
A = 3. 40 + ... + 397 . 40
A = 40. ( 3 + ... + 397 )
=> A \(⋮\) 40 ( đpcm )
A = 3 + 32 + 33 + ... + 3100
Số số hạng của A = ( 100 - 1 ) : 1 + 1 = 100 ssh . Ta chia A thanh 25 nhóm , mỗi nhóm cs 4 ssh .
=> A = ( 3 + 32 + 33 + 34 ) + .... + ( 397 + 398 + 399 + 3100 )
A = 3. ( 1 + 3 + 32 + 33 ) + .... + 397.( 1 + 3 + 32 + 33 )
A = 3. 40 + ... + 397 . 40
A = 40. ( 3 + ... + 397 )
=> A ⋮⋮ 40 ( đpcm )
HT
\(A=2^1+2^2+...+2^{2010}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2+2^2+2^3+...+2^{2010}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
A=2\(^1\)+2\(^2\)+...+2\(^{2010}\)
=(2\(^1\)+2\(^2\))+(2\(^3\)+2\(^4\))+...+(2\(^{2009}\)+2\(^{2010}\))
=2(1+2)+2\(^3\)(1+2)+...+2\(^{2009}\)(1+2)
=3(2+2\(^3\)+...+2\(^{2009}\))⋮3