cho n thuộc Z thif n^2(n^4-1`) chia heets cho 60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left(x^3-16x\right)=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)
Uầy lười lm waa
. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~
\(n^6-n^2=n^2\left(n^4-1\right)=n^2\left(n^2-1\right)\left(n^2+1\right)=n^2\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n^2\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n^2\left(n-1\right)\left(n+1\right)\)
\(=n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n^2\left(n-1\right)\left(n+1\right)\)
Vì \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp
=>\(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\)
Mà n(n-1)(n-2) và n(n+1)(n+2) là tích 3 số nguyên liên tiếp
=>n(n-1)(n-2) chia hết cho 2 và 3 ; n(n+1)(n+2) chia hết cho 2 và 3
=> \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) chia hết cho 4 và 3
Do đó \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮3.4.5=60\) (1)
- Nếu n lẻ thì n-1,n+1 chẵn hay (n-1)(n+1) chia hết cho 4
=>\(5n^2\left(n-1\right)\left(n+1\right)⋮20\)
Mà \(n\left(n-1\right)\left(n+1\right)⋮3\)
=>\(5n^2\left(n-1\right)\left(n+1\right)⋮60\)
- Nếu n chẵn thì \(n^2⋮4\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮20\)
Mà \(n\left(n-1\right)\left(n+1\right)⋮3\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮60\)
Từ 2 trường hợp trên => \(5n^2\left(n-1\right)\left(n+1\right)⋮60\) (2)
Từ (1) và (2) => \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n^2\left(n-1\right)\left(n+1\right)⋮60\) hay \(n^6-n^2⋮60\) (đpcm)
<< nhắc lại một số tính chất cơ bản:
* n² hoặc chia hết cho 3 hoặc chia 3 dư 1
* n² hoặc chia hết cho 4 hoặc chia 4 dư 1
* n^4 hoặc chia hết cho 5 hoặc chia 5 dư 1
chứng minh đơn cũng đơn giản (xem như là các bài tập nhỏ)
- - -
1a) A = n²(n²-1)
* vì n² chia 3 dư 0 hoặc 1 nên n² và n²-1 có một số chia hết cho 3
=> n²(n²-1) chia hết cho 3
* n² chia 4 dư 0 hoặc 1 nên n²(n²-1) có một số chia hết cho 4
=> n²(n²-1) chia hết cho 4
vì 3 và 4 là hai số nguyên tố cùng nhau nên A = n²(n²-1) chia hết cho 3.4 = 12
1b) B = n²(n^4-1)
* B = n²(n²-1)(n²+1)
theo câu a thì có n²(n²-1) chia hết cho 12 => B chia hết cho 12
* từ lí thuyết trên có n² chia 5 dư 0 hoặc 1 => n² và n²-1 có 1 số chia hết cho 5
=> B chia hết cho 5
do 12 và 5 là hai số nguyên tố cùng nhau => B chia hết cho 12*5 = 60
c) C = mn(m^4-n^4)
* nếu m, hoặc n có số chia hết cho 5 => C chia hết cho 5
Xét m và n đều không chia hết cho 5, từ lí thuyết trên ta có:
m^4 chia 5 dư 1 và n^4 chia 5 dư 1 => (m^4 - n^4) chia 5 dư 1-1 = 0
tóm lại ta có C chia hết cho 5
* C = mn(m^4-n^4) = mn(m²-n²)(m²+n²)
nếu m hoặc n có số chẳn => C chia hết cho 2
nếu m và n cùng lẻ => m² và n² là hai số lẻ => m²-n² chẳn
tóm lại C chia hết cho 2
* nếu m, n có số chia hết cho 3 => C chia hết cho 3
nếu m và n đều không chia hết cho 3, từ lí thuyết trên ta có:
m² và n² chia 3 đều dư 1 => m²-n² chia hết cho 3
tóm lại C chia hết cho 3
Thấy C chia hết cho 5, 2, 3 là 3 số nguyên tố
=> C chia hết cho 5*2*3 = 30
1d) D = n^5 - n = n(n^4-1)
* nếu n chia hết cho 5 => D chia hết cho 5
nếu n không chia hết cho 5 => n^4 chia 5 dư 1 => n^4-1 chia hết cho 5
tóm lại ta có D chia hết cho 5
* D = n(n²-1)(n²+1) = (n-1)n(n+1)(n²+1)
tích của 3 số nguyên liên tiếp thì chia hết cho 6 (vì có đúng 1 số chia hết cho 3, và ít nhất 1 số chia hết cho 2)
=> D chia hết cho 6
D chia hết cho 2 số nguyên tố cùng nhau là 5 và 6 => D chia hết cho 5*6 = 30
1e) E = 2n(16-n^4) = 2n(1-n^4 + 15) = 2n(1-n^4) + 30n = E' + 30n
từ câu d ta đã cứng mình D = n(n^4-1) chia hết cho 30
=> n(1-n^4) = -n(n^4-1) chia hết cho 30 => E' chia hết cho 30
=> E = E' + 30n chia hết cho 30
2) P = n^5/5 + n^3/3 + 7n/15 =
= (n^5 - n + n)/5 + (n^3 -n +n)/3 + 7n/15
= (n^5 -n)/5 + (n^3 -n)/3 + n/5 + n/3 + 7n/15
* từ câu d ta có n^5 - n chia hết cho 30 => n^5 -n chia hết cho 5
=> (n^5 - n)/5 = a (thuộc Z)
* n^3 - n = n(n²-1)(n²+1) = (n-1)n(n+1)(n²+1) có tích của 3 số nguyên liên tiếp nên chia hết cho 3
=> (n^3 - n)/3 = b (thuộc Z)
* n/5 + n/3 + 7n/15 = 15n/15 = n (thuộc Z)
Vậy: P = a + b + n thuộc Z
- - - - -
Nguồn:__|trituyet|__