Tìm các số nguyên x biết:
(x+3) (x-2) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có các trường hợp:
+TH1: \(\left\{{}\begin{matrix}x+2>0\\x-1>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x>1\end{matrix}\right.\)\(\Leftrightarrow x>1\)
+TH2: \(\left\{{}\begin{matrix}x+2< 0\\x-1< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< -2\\x< 1\end{matrix}\right.\)\(\Leftrightarrow x< -2\)
Vậy.....
(x+2) (x-1)>0 thì nó có cả đống bạn ạ VD:
(10+2)x(11-1)= 120 > 0
A, => x+2=0 hoặc y-3=0
=> x=-2 hoặc y=3
B, => x+1=0 hoặc xy-1=0
=> x=-1 hoặc xy=1
=> x=-1 hoặc x=y=+-1
a) \(\left(x+2\right).\left(y-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
b) \(\left(x+1\right)\left(xy-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\xy-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\xy=1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-1\\xy=1\end{cases}}\)
Giải:
Ta có:
x + y = 2
y + z = 3
z + x = -5
\(\Rightarrow x+y+y+z+z+x=2+3+\left(-5\right)\)
\(\Rightarrow2x+2y+2x=0\)
\(\Rightarrow2\left(x+y+z\right)=0\)
\(\Rightarrow x+y+z=0\)
\(\Rightarrow x=0-3=-3\)
\(\Rightarrow y=0-\left(-5\right)=5\)
\(\Rightarrow z=0-2=-2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-3;5;-2\right)\)
ta có x + y = 2, y + z = 3, z + x = -5
=> x + y + y +z + z + x = 2 + 3 + -5
=> 2(x + y+ z) = 0
=>x + y + z = 0
mà x + y = 2 => z= -2
tương tự => x = -3 và y = 5
\(\frac{7}{x}=\frac{y}{1}\)
\(\Leftrightarrow x\cdot y=7\)
+) \(\hept{\begin{cases}x=1\\y=7\end{cases}}\)
+) \(\hept{\begin{cases}x=-1\\y=-7\end{cases}}\)
+) \(\hept{\begin{cases}x=7\\y=1\end{cases}}\)
+) \(\hept{\begin{cases}x=-7\\y=-1\end{cases}}\)
Vậy....
(x+3)yz - xyz = 6
=> xyz + 3yz - xyz = 6
=> 3yz = 6
=> yz = 2
TH1: với y=1 => z=2
TH2: với y=-1 => z=-2
TH3: với y=2 => z=1
TH4: với y=-2 => z=-1
Theo bài ra, ta có :
xyz= 10
=> 2x= -10
=> x=-5
Vậy (x;y;z)∈{(-5;1;2);(-5;-1;-2);(-5;-2;-1);(-5;2;1)}
Ta có các trường hợp sau:
+TH1: \(\left\{{}\begin{matrix}x+3>0\\x-2< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 2\end{matrix}\right.\)\(\Leftrightarrow-3< x< 2\)
+TH2: \(\left\{{}\begin{matrix}x+3< 0\\x-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< -3\\x>2\end{matrix}\right.\) (vô lý)
Vậy -3<x<2