K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

hoi bi kho

DT
13 tháng 12 2023

M = 2 + 2^2 + 2^3 + ... + 2^30

= (2 + 2^2) + (2^3 + 2^4) + ... + (2^29 + 2^30)

= 2(1+2) + 2^3(1+2) + ... + 2^29(1+2)

= 2.3 + 2^3 . 3 + ... + 2^29 . 3

= 3(2+2^3+...+2^29) chia hết cho 3

12 tháng 12 2023

co cai nit tu di ma tinh

 

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

25 tháng 1 2023

a)đề \(\Rightarrow2M=2^2+2^3+2^4+...+2^{2019} \Rightarrow M=2^{2019}-2\)
b)đề \(\Rightarrow M=(2+2^2)+(2^3+2^4)+...+(2^{2017}+2^{2018})\)
          \(\Rightarrow M=2.3+3.\left(2^3\right)+3.2^4+...+3.2^{2017}\)
         \(\Rightarrow M⋮3\left(đpcm\right)\)

26 tháng 10 2021

\(\Leftrightarrow M=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(\Leftrightarrow M=30+2^4\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\)

\(\Leftrightarrow M=30+2^4.30+...+2^{16}.30\)

\(\Leftrightarrow M=30\left(1+2^4+...+2^{16}\right)⋮5\)

26 tháng 10 2021

\(M=\left(2+2^2+2^3+2^4\right)+...+2^{17}\left(2+2^2+2^3+2^4\right)\)

\(=30\cdot\left(1+...+2^{17}\right)⋮5\)

28 tháng 10 2023

\(M=2+2^2+2^3+2^4+...+2^{20}\\ =\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\\ =6+2^2.6+...+2^{18}.6\\ =\left(1+2^2+...+2^{18}\right).6⋮6\)

28 tháng 10 2023

M = 2 + 22 + 23 + ... + 220

M = 21 + 22 + 23 + ... + 220

Xét dãy số: 1; 2; 3;...; 20 dãy số này có 20 số hạng vậy M có 20 hạng tử. Vì 20 : 2 = 10 nên nhóm 2 hạng tử liên tiếp của M thành 1 nhóm thì:

M = (21 + 22) + (23 + 24) + ... + (219 + 220)

M = 6 + 22.( 2+ 22) + ... + 218(2 + 22)

M = 6 + 22.6 + ... + 218. 6

M = 6. ( 1 + 22 + ... + 218)

vì 6 ⋮ 6 nên 6.(1 + 22 + ... + 218) ⋮ 6 hay M = 2 + 22+...+220 ⋮ 6(đpcm)

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui

Vì n là số tự nhiên nên n có dạng:

n=2k hoặc n= 2k+1 ( k ∈N∈N)

Với n=2k thì: (n+3)(n+12) = (2k+3)(2k+12)

= 2(2k+3)(k+6)⋮⋮2

⇒⇒(n+3)(n+12) ⋮2⋮2

Với n = 2k+1 thì: (n+3)(n+12)= (2k+1+3)(2k+1+12)

= (2k+4)(2k+13)

= 2(k+2)(2k+13)⋮2⋮2

⇒⇒ (n+3)(n+12)⋮2⋮2

Vậy (n+3)(n+12) là số chia hết cho 2 với mọi số tự nhiên n