Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
a)đề \(\Rightarrow2M=2^2+2^3+2^4+...+2^{2019}
\Rightarrow M=2^{2019}-2\)
b)đề \(\Rightarrow M=(2+2^2)+(2^3+2^4)+...+(2^{2017}+2^{2018})\)
\(\Rightarrow M=2.3+3.\left(2^3\right)+3.2^4+...+3.2^{2017}\)
\(\Rightarrow M⋮3\left(đpcm\right)\)
\(\Leftrightarrow M=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(\Leftrightarrow M=30+2^4\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\)
\(\Leftrightarrow M=30+2^4.30+...+2^{16}.30\)
\(\Leftrightarrow M=30\left(1+2^4+...+2^{16}\right)⋮5\)
\(M=\left(2+2^2+2^3+2^4\right)+...+2^{17}\left(2+2^2+2^3+2^4\right)\)
\(=30\cdot\left(1+...+2^{17}\right)⋮5\)
\(M=2+2^2+2^3+2^4+...+2^{20}\\ =\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\\ =6+2^2.6+...+2^{18}.6\\ =\left(1+2^2+...+2^{18}\right).6⋮6\)
M = 2 + 22 + 23 + ... + 220
M = 21 + 22 + 23 + ... + 220
Xét dãy số: 1; 2; 3;...; 20 dãy số này có 20 số hạng vậy M có 20 hạng tử. Vì 20 : 2 = 10 nên nhóm 2 hạng tử liên tiếp của M thành 1 nhóm thì:
M = (21 + 22) + (23 + 24) + ... + (219 + 220)
M = 6 + 22.( 2+ 22) + ... + 218(2 + 22)
M = 6 + 22.6 + ... + 218. 6
M = 6. ( 1 + 22 + ... + 218)
vì 6 ⋮ 6 nên 6.(1 + 22 + ... + 218) ⋮ 6 hay M = 2 + 22+...+220 ⋮ 6(đpcm)
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
Vì n là số tự nhiên nên n có dạng:
n=2k hoặc n= 2k+1 ( k ∈N∈N)
Với n=2k thì: (n+3)(n+12) = (2k+3)(2k+12)
= 2(2k+3)(k+6)⋮⋮2
⇒⇒(n+3)(n+12) ⋮2⋮2
Với n = 2k+1 thì: (n+3)(n+12)= (2k+1+3)(2k+1+12)
= (2k+4)(2k+13)
= 2(k+2)(2k+13)⋮2⋮2
⇒⇒ (n+3)(n+12)⋮2⋮2
Vậy (n+3)(n+12) là số chia hết cho 2 với mọi số tự nhiên n
hoi bi kho
M = 2 + 2^2 + 2^3 + ... + 2^30
= (2 + 2^2) + (2^3 + 2^4) + ... + (2^29 + 2^30)
= 2(1+2) + 2^3(1+2) + ... + 2^29(1+2)
= 2.3 + 2^3 . 3 + ... + 2^29 . 3
= 3(2+2^3+...+2^29) chia hết cho 3