Cho tam giác ABC có 3 góc nhọn. Kẻ AH vuông góc với BC. Vẽ HI và HK lần lượt vuông góc với AB, AC. Trên tia đối của tia IH, KH lần lượt lấy các điểm E và F sao cho IE = IH và KF = KH.
a. Chứng minh tam giác AIE = tam giác AIH
b. Chứng minh AE = AF
c. Cho góc BAC = 45 độ, tính góc EAF.
a: Xét ΔAIE vuông tại I và ΔAIH vuông tại I có
AH chung
IE=IH
Do đó: ΔAIE=ΔAIH
b: Xét ΔAHF có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAHF cân tại A
=>AH=AF
Ta có: ΔAEI=ΔAHI
=>AE=AH và \(\widehat{EAI}=\widehat{HAI}\)
Ta có: AE=AH
AH=AF
Do đó: AE=AF
c: Ta có: \(\widehat{EAI}=\widehat{HAI}\)
mà AI nằm giữa AE,AH
nên AI là phân giác của góc EAH
=>\(\widehat{EAH}=2\cdot\widehat{IAH}\)
Ta có; ΔAHF cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAF
=>\(\widehat{HAF}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{EAF}=\widehat{EAH}+\widehat{FAH}\)
\(=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
\(=2\cdot\widehat{BAC}=2\cdot45^0=90^0\)