Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là trung điểm của AC. Lấy E đối xứng với H qua D. a) Chứng minh tứ giác AHCE là hình chữ nhật. b) Từ A kẻ đường thẳng song song với HE cắt BC tại I. Chứng minh tứ giác AIHE là hình bình hành. c) Trên tia đối của tia HA lấy điểm K sao cho AH = HK. Chứng minh tứ giác AIKC là hình thoi. d) Tam giác ABC có thêm điều kiện gì để CAIK là hình vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
a) Xét tứ giác AHCE có:
+ D là trung điểm của AC (gt).
+ D là trung điểm của HE (do E đối xứng với H qua D).
=> Tứ giác AHCE là hình bình hành (dhnb).
Mà ^AHC = 90o (AH vuông góc BC).
=> Tứ giác AHCE là hình chữ nhật (dhnb).
Xét tứ giác AHBN có:
+ M là trung điểm của AB (gt).
+ M là trung điểm của HN (do N đối xứng với H qua M).
=> Tứ giác AHBN là hình bình hành (dhnb).
Mà ^AHB = 90o (AH vuông góc BC).
=> Tứ giác AHBN là hình chữ nhật (dhnb).
b) Tứ giác AHCE là hình chữ nhật (cmt).
=> AE // HC (Tính chất hình chữ nhật).
Xét tứ giác AEHI có:
+ AE // IH (do AE // HC).
+ AI // EH (gt).
=> Tứ giác AEHI là hình bình hành (dhnb).
c) Ta có: AE = IH (Tứ giác AEHI là hình bình hành).
Mà AE = HC (Tứ giác AHCE là hình chữ nhật).
=> IH = HC.
=> H là trung điểm IC.
Xét tứ giác CAIK có:
+ H là trung điểm của IC (cmt).
+ H là trung điểm của AK (AH = HK).
=> Tứ giác CAIK là hình bình hành (dhnb).
Mà AK vuông góc IC (do AH vuông góc BC).
=> Tứ giác CAIK là hình thoi (dhnb).
a: Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
a: Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b:
Sửa đề: Cắt tia EA tại M
Xét tứ giác CBMA có
CA//MB
CB//MA
Do đó: CBMA là hình bình hành
Suy ra: CM cắt BA tại trung điểm của mỗi đường
=>I là trung điểm của CM
a: Xét tứ giác AHCE có
D là trung điểm chung của aC và HE
=>AHCE là hình bình hành
Hình bình hành AHCE có \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b:Ta có: AHCE là hình bình hành
=>AE//CH và AE=CH
=>AE//IH
Xét tứ giác AEHI có
AE//HI
AI//EH
Do đó: AEHI là hình bình hành
c: Ta có: AEHI là hình bình hành
=>AE=HI
mà AE=HC
nên HI=HC
=>H là trung điểm của CI
Xét tứ giác ACKI có
H là trung điểm chung của AK và CI
=>ACKI là hình bình hành
Hình bình hành ACKI có AK\(\perp\)CI
nên ACKI là hình thoi