Cho A=n-6/n-2 với n là số nguyên. Tìm n để A nhận giá trị là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ
ĐKXĐ: n<>2
Để A là số tự nhiên thì \(\left\{{}\begin{matrix}n-6⋮n-2\\\dfrac{n-6}{n-2}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n-2-4⋮n-2\\\left[{}\begin{matrix}\left\{{}\begin{matrix}n-6>0\\n-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}n-6< 0\\n-2< 0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4⋮n-2\\\left[{}\begin{matrix}n>6\\n< 2\end{matrix}\right.\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n-2\in\left\{1;-1;2;-2;4;-4\right\}\\\left[{}\begin{matrix}n>6\\n< 2\end{matrix}\right.\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n\in\left\{3;1;4;0;6;-2\right\}\\\left[{}\begin{matrix}n>6\\n< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow n\in\left\{1;0;-2\right\}\)
\(A=\frac{2n+7}{n-2}\)
a)\(n\inℤ;n\ne2\)
b)\(\frac{2n+7}{n-2}=\frac{2n-4+11}{n-2}=2+\frac{11}{n-2}\)
Để \(A\)nhận giá trị nguyên \(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\inƯ\left(11\right)\\ \Rightarrow n-2\in\left\{\pm1;\pm11\right\}\)
n-2 | 1 | -1 | 11 | -11 |
n | 3 | 1 | 13 | -9 |
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
\(n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(2\) | \(4\) | \(0\) | \(-2\) |
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
\(n-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(n\) | \(7\) | \(5\) | \(9\) | \(3\) | \(11\) | \(1\) | \(21\) | \(-9\) |
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)
a) Gọi d là ước nguyên tố của A .Ta có:
2n+7-2*(2n-2) chia hết cho d
suy ra:2n+7-(2n-2) chia hết cho d
suy ra:2n+7-2n+2 chia hế cho d
suy ra:9 chia hết cho d.Mà d là số nguyên tố nên d =3
-Ta thấy :2n+7 chia hết cho 3 ,khi đó n-2 chia hết cho 3
khi và chỉ khi:2n+-3 chia hết cho 3
khi và chỉ khi:2n+(7-3) chia hết cho 3
khi và chỉ khi:2n +4 chia hết cho 3
khi và chỉ khi: 2*(n+2) chia hết cho 3
khi và chỉ khi : n+2 chia hết cho 3
khi và chỉ khi : n=3k -2 (với k thuộc N)
Vậy với n khác 3k-2 thì A (=2n+7/n-2) là phân số
b) với n thuộc Z để A=2n+7/n-2 thuộc Z ta có:
2n+7 chia hết cho n-2
suy ra: 2n+7-(n-2) chia hết cho n-2
suy ra: 2n+7-n+2 chia hết cho n-2
suy ra: (2n-n) + (7+2) chia hết cho n-2
suy ra: n +9 chia hết cho n-2
suy ra: (n-2) +11 chia hết cho n-2
suy ra; 11 chia hết cho n-2 [do (n-2) chia hết cho (n-2)]
suy ra: n-2 thuộc ước của 11 ={ -1;1;-11;11}
Ta có bảng sau:
n-2 | - |
n-2 | -1 1 -11 11 |
n | 1 3 -9 13 |
a) HS tự làm.
b) HS tự làm.
c) Phân số A có giá trị là số nguyên khi (n + 5):(n + 4) Từ đó suy ra l ⋮ (n + 4) hay n + 4 là ước của 1.
Do đó n ∈ (-5; -3).
Để A là số nguyên thì \(n-6⋮n-2\)
=>\(n-2-4⋮n-2\)
=>\(-4⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{3;1;4;0;6;-2\right\}\)