Bài 1: phân tích các đa thức sau thành nhân tử bằng phương pháp đặt nhân tử chung:
1) xy – 12x – 18y | 11) 2mx – 4m2xy + 6mx | 21) ab(x–5) –a2(5–x) |
2) 8xy – 24xy + 16x | 12) 7x2y5 – 14x3y4 – 21y3 | 22) 2a2(x –y) –4a(y–x) |
3) xy – x | 13) 2(x–y) – a(x–y) | 23) a(x–3) – a2(3–x) |
2: \(8xy-24xy+16x\)
\(=8x\cdot y-8x\cdot3y+8x\cdot2\)
\(=8x\left(y-3y+2\right)=8x\left(-2y+2\right)\)
\(=-16y\left(y-1\right)\)
3: \(xy-x=x\cdot y-x\cdot1=x\left(y-1\right)\)
11: \(2mx-4m2xy+6mx\)
\(=2mx-2my\cdot4y+2mx\cdot3\)
\(=2mx\left(1-4y+3\right)\)
\(=2mx\left(4-4y\right)=8mx\left(1-y\right)\)
12: \(7x^2y^5-14x^3y^4-21y^3\)
\(=7y^3\cdot x^2y^2-7y^3\cdot2x^3y-7y^3\cdot3\)
\(=7y^3\left(x^2y^2-2x^3y-3\right)\)
13: \(2\left(x-y\right)-a\left(x-y\right)\)
\(=2\cdot\left(x-y\right)-a\cdot\left(x-y\right)\)
\(=\left(x-y\right)\left(2-a\right)\)