Tính nhanh
[1+1/3]* {1+1/8]*{1+1/15]*...*[1+1/9999]
Dấu * là dấu nhân
giải hộ mình nhé giải cả ra nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\frac{1}{3}\cdot1\frac{1}{8}\cdot1\frac{1}{15}\cdot1\frac{1}{24}\cdot...\cdot1\frac{1}{99}\)
\(=\frac{4}{3}\cdot\frac{9}{8}\cdot\frac{16}{15}\cdot\frac{25}{24}\cdot...\cdot\frac{100}{99}\)
\(=\frac{2.2\cdot3.3\cdot4.4\cdot5.5\cdot...\cdot10.10}{1.3\cdot2.4\cdot3.5\cdot4.6\cdot...\cdot9.11}\)
\(=\frac{2.10}{1.11}=\frac{20}{11}\)
"." = nhân
\(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{97}+\frac{1}{99}\)
\(=2-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)
\(=2-\frac{1}{99}\)
\(=\frac{197}{99}\)
1+1/3+1/5...+1/97+1/99=(1+1/99) + (1/3+1/97) + (1/5+1/95)....+(1/49+1/51)
= 100/1.99 + 100/3.97 + 100/5.95 +.....=100.(1/1.99 + 1/3.97 + 1/5.95 +.....)
Mau so:
1/1.99 + 1/3.97 +1/5.95....+1/95.5+ 1/97.3 +1/99.1=2/1.99 +2/3.97 +2/5.95+.....
=2.(1/1.99 + 1/3.97 + 1/5.95 +.....)
=>A=(100.(1/1.99 + 1/3.97 + 1/5.95 +.....)) : (2.(1/1.99 + 1/3.97 + 1/5.95 +.....))=50
chuẩn luôn , tích nha
Thanks nhìu ^_^
\(\frac{2}{3}.\frac{3}{4}.\frac{4}{5}=\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
=> 1=1
Ta có :
\(\left(\frac{3}{4}x-\frac{1}{2}\right)^2-\frac{1}{64}=0\)
\(\Leftrightarrow\)\(\left(\frac{3}{4}x-\frac{1}{2}\right)^2=\frac{1}{64}\)
\(\Leftrightarrow\)\(\left(\frac{3}{4}x-\frac{1}{2}\right)^2=\frac{1^2}{8^2}\)
\(\Leftrightarrow\)\(\left(\frac{3}{4}x-\frac{1}{2}\right)^2=\left(\frac{1}{8}\right)^2\)
\(\Leftrightarrow\)\(\frac{3}{4}x-\frac{1}{2}=\frac{1}{8}\)
\(\Leftrightarrow\)\(\frac{3}{4}x=\frac{1}{8}+\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{3}{4}x=\frac{5}{8}\)
\(\Leftrightarrow\)\(x=\frac{5}{8}:\frac{3}{4}\)
\(\Leftrightarrow\)\(x=\frac{5}{8}.\frac{4}{3}\)
\(\Leftrightarrow\)\(x=\frac{5}{2}.\frac{1}{3}\)
\(\Leftrightarrow\)\(x=\frac{5}{6}\)
Vậy \(x=\frac{5}{6}\)
Chúc bạn học tốt ~
\(\left(\frac{3}{4}.x-\frac{1}{2}\right)^2-\frac{1}{64}=0\)
\(\left(\frac{3}{4}.x-\frac{1}{2}\right)^2=0+\frac{1}{64}=\frac{1}{64}\)
\(\left(\frac{3}{4}.x-\frac{1}{2}\right)^2=\left(\frac{1}{8}\right)^2\)
=>\(\frac{3}{4}.x-\frac{1}{2}=\frac{1}{8}\)
\(\frac{3}{4}.x=\frac{1}{8}+\frac{1}{2}\)
\(\frac{3}{4}.x=\frac{5}{8}\)
\(x=\frac{5}{8}:\frac{3}{4}\)
\(x=\frac{5}{6}\)
a, \(\left|x+2\right|-\left|x+7\right|=0\Rightarrow\left|x+2\right|=\left|x+7\right|\Rightarrow\orbr{\begin{cases}x+2=x+7\\x+2=-x-7\end{cases}\Rightarrow\orbr{\begin{cases}0=5\left(loại\right)\\2x=-9\end{cases}\Rightarrow}x=\frac{-9}{2}}\)
b, - Nếu \(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\), ta có: 2x - 1 = 2x - 1 => 2x = 2x (thỏa mãn với mọi x)
- Nếu 2x - 1 < 0 => \(x< \frac{1}{2}\), ta có: 2x - 1 = 1 - 2x => 4x = 2 => x = \(\frac{1}{2}\) (không thỏa mãn điều kiện)
Vậy \(x\ge\frac{1}{2}\)
c,d tương tự b
e, tương tự a
\(\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{8}\right)\times\left(1+\frac{1}{15}\right)\times...\times\left(1+\frac{1}{9999}\right)\)
\(=\frac{2^2}{1\cdot3}\times\frac{3^2}{2\cdot4}\times\frac{4^2}{3\cdot5}\times...\times\frac{100^2}{99\cdot101}\)
\(=\frac{2\cdot3\cdot4\cdot...\cdot100}{1\cdot2\cdot3\cdot...\cdot99}\times\frac{2\cdot3\cdot4\cdot...\cdot100}{3\cdot4\cdot5\cdot...\cdot101}\)
\(=\frac{100}{1}\times\frac{2}{101}=\frac{200}{101}.\)