K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

ΔDMC nội tiếp

DC là đường kính

Do đó: ΔDMC vuông tại M

=>CM\(\perp\)MD tại M

=>CM\(\perp\)AD tại M

Xét tứ giác AMHC có \(\widehat{AMC}=\widehat{AHC}=90^0\)

nên AMHC là tứ giác nội tiếp

8 tháng 12 2023

phần b,c thì sao ạ ?

 

a) Ta có △AOC vuông tại C
⇒sin^CAO=OC/OA
⇒CAOˆ=30°
Mà A là giao điểm của 2 tiếp tuyến của (O)
⇒BACˆ=2.OACˆ=2.30° =60° (1)
Và AB=AC(2)
Từ (1),(2)⇒△ABC đều
b) Ta có OD⊥OB
AB⊥OB
Suy ra OD//AB⇒OD//AE(3)
Chứng minh tương tự: OE//AD(4)
Tự (3),(4)⇒ADOE là hình bình hành
Ta có △AOC vuông tại C
⇒OABˆ+AOBˆ=90°
⇒AOBˆ=90° −OABˆ=90° −30° = 60°
Ta lại có:DOBˆ=90°
⇒DOAˆ+AOBˆ=90°
⇔DOAˆ+ 60°=90°
⇒ DOAˆ=30°
⇒OADˆ=DOAˆ =30°
⇒△DOA cân tại D⇒AD=DO
Mà ADOE là hình bình hành
Vậy ADOE là hình thoi
c) Ta gọi H là giao điểm hai đường chéo OA và DE của hình thoi ADOE
⇒OH=HA=OA/2=2R/2=R
⇒H nằm trên đường tròn (O)
Và AO⊥DE ⇒ OHDˆ= 90°
Vậy DE là tiếp tuyến của đường tròn (O) tại H

18 tháng 12 2021

a: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA⊥BC